Loading…
Rotation invariant curvelet based image retrieval & classification via Gaussian mixture model and co-occurrence features
Demand for better retrieval methods continue to outstrip the capabilities of available technologies despite the rapid growth of new feature extraction techniques. Extracting discriminatory features that contain texture specific information are of crucial importance in image indexing. This paper pres...
Saved in:
Published in: | Multimedia tools and applications 2019-03, Vol.78 (6), p.6581-6605 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Demand for better retrieval methods continue to outstrip the capabilities of available technologies despite the rapid growth of new feature extraction techniques. Extracting discriminatory features that contain texture specific information are of crucial importance in image indexing. This paper presents a novel rotation invariant texture representation model based on the multi-resolution curvelet transform via co-occurrence and Gaussian mixture features for image retrieval and classification. To extract these features, curvelet transform is applied and the coefficients are obtained at each scale and orientation. The Gaussian mixture model (GMM) features are computed from each of the sub bands and co-occurrence features are computed for only specific sub band. Rotation invariance is provided by applying cycle-shift around the GMM features. The proposed method is evaluated on well-known databases such as Brodatz, Outex_TC_00010, Outex_TC_00012, Outex_TC_00012horizon, Outex_TC_00012tl84, Vistex and KTH-TIPS. When the feature vector is analyzed in terms of its size, it is observed that its dimension is smaller than that of the existing rotation-invariant variants and it has a very good performance. Simulation results show a good performance achieved by combining different techniques with the curvelet transform. Proposed method results in high degree of success rate in classification and in precision-recall value for retrieval. |
---|---|
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-018-6368-8 |