Loading…
A nonlinear Kolmogorov equation for stochastic functional delay differential equations with jumps
We consider a stochastic functional delay differential equation, namely an equation whose evolution depends on its past history as well as on its present state, driven by a pure diffusive component plus a pure jump Poisson compensated measure. We lift the problem in the infinite dimensional space of...
Saved in:
Published in: | arXiv.org 2017-02 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a stochastic functional delay differential equation, namely an equation whose evolution depends on its past history as well as on its present state, driven by a pure diffusive component plus a pure jump Poisson compensated measure. We lift the problem in the infinite dimensional space of square integrable Lebesgue functions in order to show that its solution is an \(L^2-\)valued Markov process whose uniqueness can be shown under standard assumptions of locally Lipschitzianity and linear growth for the coefficients. Coupling the aforementioned equation with a standard backward differential equation, and deriving some ad hoc results concerning the Malliavin derivative for systems with memory, we are able to derive a non--linear Feynman--Kac representation theorem under mild assumptions of differentiability. |
---|---|
ISSN: | 2331-8422 |