Loading…
Parallelization Strategies for Spatial Agent-Based Models
Agent-based modeling (ABM) is a bottom-up modeling approach, where each entity of the system being modeled is uniquely represented as an independent decision-making agent. Large scale emergent behavior in ABMs is population sensitive. As such, the number of agents in a simulation should be able to r...
Saved in:
Published in: | arXiv.org 2017-04 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Agent-based modeling (ABM) is a bottom-up modeling approach, where each entity of the system being modeled is uniquely represented as an independent decision-making agent. Large scale emergent behavior in ABMs is population sensitive. As such, the number of agents in a simulation should be able to reflect the reality of the system being modeled, which can be in the order of millions or billions of individuals in certain domains. A natural solution to reach acceptable scalability in commodity multi-core processors consists of decomposing models such that each component can be independently processed by a different thread in a concurrent manner. In this paper we present a multithreaded Java implementation of the PPHPC ABM, with two goals in mind: 1) compare the performance of this implementation with an existing NetLogo implementation; and, 2) study how different parallelization strategies impact simulation performance on a shared memory architecture. Results show that: 1) model parallelization can yield considerable performance gains; 2) distinct parallelization strategies offer specific trade-offs in terms of performance and simulation reproducibility; and, 3) PPHPC is a valid reference model for comparing distinct implementations or parallelization strategies, from both performance and statistical accuracy perspectives. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1507.04047 |