Loading…
A tetrahedral space-filling curve for non-conforming adaptive meshes
We introduce a space-filling curve for triangular and tetrahedral red-refinement that can be computed using bitwise interleaving operations similar to the well-known Z-order or Morton curve for cubical meshes. To store sufficient information for random access, we define a low-memory encoding using 1...
Saved in:
Published in: | arXiv.org 2017-04 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce a space-filling curve for triangular and tetrahedral red-refinement that can be computed using bitwise interleaving operations similar to the well-known Z-order or Morton curve for cubical meshes. To store sufficient information for random access, we define a low-memory encoding using 10 bytes per triangle and 14 bytes per tetrahedron. We present algorithms that compute the parent, children, and face-neighbors of a mesh element in constant time, as well as the next and previous element in the space-filling curve and whether a given element is on the boundary of the root simplex or not. Our presentation concludes with a scalability demonstration that creates and adapts selected meshes on a large distributed-memory system. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1509.04627 |