Loading…
Encoder-Decoder Shift-Reduce Syntactic Parsing
Starting from NMT, encoder-decoder neu- ral networks have been used for many NLP problems. Graph-based models and transition-based models borrowing the en- coder components achieve state-of-the-art performance on dependency parsing and constituent parsing, respectively. How- ever, there has not been...
Saved in:
Published in: | arXiv.org 2017-06 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Starting from NMT, encoder-decoder neu- ral networks have been used for many NLP problems. Graph-based models and transition-based models borrowing the en- coder components achieve state-of-the-art performance on dependency parsing and constituent parsing, respectively. How- ever, there has not been work empirically studying the encoder-decoder neural net- works for transition-based parsing. We apply a simple encoder-decoder to this end, achieving comparable results to the parser of Dyer et al. (2015) on standard de- pendency parsing, and outperforming the parser of Vinyals et al. (2015) on con- stituent parsing. |
---|---|
ISSN: | 2331-8422 |