Loading…
An integrabilist approach of out-of-equilibrium statistical physics models
In the first part of the thesis we construct models, called integrable, in which we can perform exact computations of physical quantities. We introduce several new out-of-equilibrium models that are obtained by solving, in specific cases, the Yang-Baxter equation and the reflection equation. We prov...
Saved in:
Published in: | arXiv.org 2017-08 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the first part of the thesis we construct models, called integrable, in which we can perform exact computations of physical quantities. We introduce several new out-of-equilibrium models that are obtained by solving, in specific cases, the Yang-Baxter equation and the reflection equation. We provide new algebraic structures which allow us to construct the solutions through a Baxterisation procedure. In the second part of the thesis we compute exactly the stationary state of these models using a matrix ansatz. We shed light on the connection between this technique and the integrability of the model by pointing out two key relations: the Zamolodchikov-Faddeev relation and the Ghoshal-Zamolodchikov relation. The integrability is also exploited, through the quantum Knizhnik-Zamolodchikov equations, to compute the fluctuations of the particles current, unrevealing connections with the theory of symmetric polynomials (the Koornwinder polynomials in particular). Finally the last part of the thesis deals with the hydrodynamic limit of the models, i.e when the lattice spacing tends to zero and the number of particles tends to infinity. The exact results obtained for a finite size system allow us to check the validity of the predictions of the macroscopic fluctuations theory (concerning the fluctuations of the current and the density profile in the stationary state) and to extend the theory to systems with several species of particles. |
---|---|
ISSN: | 2331-8422 |