Loading…
Nonlinear Instability of Half-Solitons on Star Graphs
We consider a half-soliton stationary state of the nonlinear Schrodinger equation with the power nonlinearity on a star graph consisting of N edges and a single vertex. For the subcritical power nonlinearity, the half-soliton state is a degenerate critical point of the action functional under the ma...
Saved in:
Published in: | arXiv.org 2017-05 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a half-soliton stationary state of the nonlinear Schrodinger equation with the power nonlinearity on a star graph consisting of N edges and a single vertex. For the subcritical power nonlinearity, the half-soliton state is a degenerate critical point of the action functional under the mass constraint such that the second variation is nonnegative. By using normal forms, we prove that the degenerate critical point is a nonlinear saddle point, for which the small perturbations to the half-soliton state grow slowly in time resulting in the nonlinear instability of the half-soliton state. The result holds for any \(N \geq 3\) and arbitrary subcritical power nonlinearity. It gives a precise dynamical characterization of the previous result of Adami {\em et al.}, where the half-soliton state was shown to be a saddle point of the action functional under the mass constraint for \(N = 3\) and for cubic nonlinearity. |
---|---|
ISSN: | 2331-8422 |