Loading…

Noise-Dependent Adaption of the Wiener Filter for the GPS Position Time Series

Various methods have been used to model the time-varying curves within the global positioning system (GPS) position time series. However, very few consider the level of noise a priori before the seasonal curves are estimated. This study is the first to consider the Wiener filter (WF), already used i...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical geosciences 2019-01, Vol.51 (1), p.53-73
Main Authors: Klos, Anna, Bos, Machiel S., Fernandes, Rui M. S., Bogusz, Janusz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-d25a413cab6aef3434b045a28c0318a57cace752feb4289c4a8642603e636e8c3
cites cdi_FETCH-LOGICAL-c359t-d25a413cab6aef3434b045a28c0318a57cace752feb4289c4a8642603e636e8c3
container_end_page 73
container_issue 1
container_start_page 53
container_title Mathematical geosciences
container_volume 51
creator Klos, Anna
Bos, Machiel S.
Fernandes, Rui M. S.
Bogusz, Janusz
description Various methods have been used to model the time-varying curves within the global positioning system (GPS) position time series. However, very few consider the level of noise a priori before the seasonal curves are estimated. This study is the first to consider the Wiener filter (WF), already used in geodesy to denoise gravity records, to model the seasonal signals in the GPS position time series. To model the time-varying part of the signal, a first-order autoregressive process is employed. The WF is then adapted to the noise level of the data to model only those time variabilities which are significant. Synthetic and real GPS data is used to demonstrate that this variation of the WF leaves the underlying noise properties intact and provides optimal modeling of seasonal signals. This methodology is referred to as the adaptive WF (AWF) and is both easy to implement and fast, due to the use of the fast Fourier transform method.
doi_str_mv 10.1007/s11004-018-9760-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2075935993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075935993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d25a413cab6aef3434b045a28c0318a57cace752feb4289c4a8642603e636e8c3</originalsourceid><addsrcrecordid>eNp1kE9PAjEUxBujiYh-AG-beK622z_bPRIUNCFIAsZjU8pbLYHt2i4H-PQW1ujJ07y8_GYmGYRuKbmnhBQPkSbhmFCFy0ISfDhDPaoKjlUp2PnvLekluopxTYikTNAemk69i4AfoYF6BXWbDVamaZ2vM19l7Sdk7w5qCNnIbdoklQ-n73g2z2Y-uhO5cFvI5hAcxGt0UZlNhJsf7aO30dNi-Iwnr-OX4WCCLRNli1e5MJwya5bSQMU440vChcmVJYwqIwprLBQir2DJc1VabpTkuSQMJJOgLOujuy63Cf5rB7HVa78LdarUOSlEmVpKlijaUTb4GANUuglua8JeU6KPs-luNp1m08fZ9CF58s4TE1t_QPhL_t_0DQR7byw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075935993</pqid></control><display><type>article</type><title>Noise-Dependent Adaption of the Wiener Filter for the GPS Position Time Series</title><source>Springer Nature</source><creator>Klos, Anna ; Bos, Machiel S. ; Fernandes, Rui M. S. ; Bogusz, Janusz</creator><creatorcontrib>Klos, Anna ; Bos, Machiel S. ; Fernandes, Rui M. S. ; Bogusz, Janusz</creatorcontrib><description>Various methods have been used to model the time-varying curves within the global positioning system (GPS) position time series. However, very few consider the level of noise a priori before the seasonal curves are estimated. This study is the first to consider the Wiener filter (WF), already used in geodesy to denoise gravity records, to model the seasonal signals in the GPS position time series. To model the time-varying part of the signal, a first-order autoregressive process is employed. The WF is then adapted to the noise level of the data to model only those time variabilities which are significant. Synthetic and real GPS data is used to demonstrate that this variation of the WF leaves the underlying noise properties intact and provides optimal modeling of seasonal signals. This methodology is referred to as the adaptive WF (AWF) and is both easy to implement and fast, due to the use of the fast Fourier transform method.</description><identifier>ISSN: 1874-8961</identifier><identifier>EISSN: 1874-8953</identifier><identifier>DOI: 10.1007/s11004-018-9760-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Autoregressive processes ; Chemistry and Earth Sciences ; Computer Science ; Earth and Environmental Science ; Earth Sciences ; Fast Fourier transformations ; Fourier transforms ; Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Global positioning systems ; GPS ; Gravity ; Hydrogeology ; Modelling ; Noise ; Noise levels ; Noise reduction ; Physics ; Positioning systems ; Satellite navigation systems ; Signal processing ; Statistics for Engineering ; Time series ; Wiener filtering</subject><ispartof>Mathematical geosciences, 2019-01, Vol.51 (1), p.53-73</ispartof><rights>The Author(s) 2018</rights><rights>Mathematical Geosciences is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d25a413cab6aef3434b045a28c0318a57cace752feb4289c4a8642603e636e8c3</citedby><cites>FETCH-LOGICAL-c359t-d25a413cab6aef3434b045a28c0318a57cace752feb4289c4a8642603e636e8c3</cites><orcidid>0000-0002-1946-8637 ; 0000-0001-6742-8077 ; 0000-0002-9733-284X ; 0000-0002-0424-7022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Klos, Anna</creatorcontrib><creatorcontrib>Bos, Machiel S.</creatorcontrib><creatorcontrib>Fernandes, Rui M. S.</creatorcontrib><creatorcontrib>Bogusz, Janusz</creatorcontrib><title>Noise-Dependent Adaption of the Wiener Filter for the GPS Position Time Series</title><title>Mathematical geosciences</title><addtitle>Math Geosci</addtitle><description>Various methods have been used to model the time-varying curves within the global positioning system (GPS) position time series. However, very few consider the level of noise a priori before the seasonal curves are estimated. This study is the first to consider the Wiener filter (WF), already used in geodesy to denoise gravity records, to model the seasonal signals in the GPS position time series. To model the time-varying part of the signal, a first-order autoregressive process is employed. The WF is then adapted to the noise level of the data to model only those time variabilities which are significant. Synthetic and real GPS data is used to demonstrate that this variation of the WF leaves the underlying noise properties intact and provides optimal modeling of seasonal signals. This methodology is referred to as the adaptive WF (AWF) and is both easy to implement and fast, due to the use of the fast Fourier transform method.</description><subject>Autoregressive processes</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Gravity</subject><subject>Hydrogeology</subject><subject>Modelling</subject><subject>Noise</subject><subject>Noise levels</subject><subject>Noise reduction</subject><subject>Physics</subject><subject>Positioning systems</subject><subject>Satellite navigation systems</subject><subject>Signal processing</subject><subject>Statistics for Engineering</subject><subject>Time series</subject><subject>Wiener filtering</subject><issn>1874-8961</issn><issn>1874-8953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PAjEUxBujiYh-AG-beK622z_bPRIUNCFIAsZjU8pbLYHt2i4H-PQW1ujJ07y8_GYmGYRuKbmnhBQPkSbhmFCFy0ISfDhDPaoKjlUp2PnvLekluopxTYikTNAemk69i4AfoYF6BXWbDVamaZ2vM19l7Sdk7w5qCNnIbdoklQ-n73g2z2Y-uhO5cFvI5hAcxGt0UZlNhJsf7aO30dNi-Iwnr-OX4WCCLRNli1e5MJwya5bSQMU440vChcmVJYwqIwprLBQir2DJc1VabpTkuSQMJJOgLOujuy63Cf5rB7HVa78LdarUOSlEmVpKlijaUTb4GANUuglua8JeU6KPs-luNp1m08fZ9CF58s4TE1t_QPhL_t_0DQR7byw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Klos, Anna</creator><creator>Bos, Machiel S.</creator><creator>Fernandes, Rui M. S.</creator><creator>Bogusz, Janusz</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1946-8637</orcidid><orcidid>https://orcid.org/0000-0001-6742-8077</orcidid><orcidid>https://orcid.org/0000-0002-9733-284X</orcidid><orcidid>https://orcid.org/0000-0002-0424-7022</orcidid></search><sort><creationdate>20190101</creationdate><title>Noise-Dependent Adaption of the Wiener Filter for the GPS Position Time Series</title><author>Klos, Anna ; Bos, Machiel S. ; Fernandes, Rui M. S. ; Bogusz, Janusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d25a413cab6aef3434b045a28c0318a57cace752feb4289c4a8642603e636e8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Autoregressive processes</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Gravity</topic><topic>Hydrogeology</topic><topic>Modelling</topic><topic>Noise</topic><topic>Noise levels</topic><topic>Noise reduction</topic><topic>Physics</topic><topic>Positioning systems</topic><topic>Satellite navigation systems</topic><topic>Signal processing</topic><topic>Statistics for Engineering</topic><topic>Time series</topic><topic>Wiener filtering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klos, Anna</creatorcontrib><creatorcontrib>Bos, Machiel S.</creatorcontrib><creatorcontrib>Fernandes, Rui M. S.</creatorcontrib><creatorcontrib>Bogusz, Janusz</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klos, Anna</au><au>Bos, Machiel S.</au><au>Fernandes, Rui M. S.</au><au>Bogusz, Janusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise-Dependent Adaption of the Wiener Filter for the GPS Position Time Series</atitle><jtitle>Mathematical geosciences</jtitle><stitle>Math Geosci</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>51</volume><issue>1</issue><spage>53</spage><epage>73</epage><pages>53-73</pages><issn>1874-8961</issn><eissn>1874-8953</eissn><abstract>Various methods have been used to model the time-varying curves within the global positioning system (GPS) position time series. However, very few consider the level of noise a priori before the seasonal curves are estimated. This study is the first to consider the Wiener filter (WF), already used in geodesy to denoise gravity records, to model the seasonal signals in the GPS position time series. To model the time-varying part of the signal, a first-order autoregressive process is employed. The WF is then adapted to the noise level of the data to model only those time variabilities which are significant. Synthetic and real GPS data is used to demonstrate that this variation of the WF leaves the underlying noise properties intact and provides optimal modeling of seasonal signals. This methodology is referred to as the adaptive WF (AWF) and is both easy to implement and fast, due to the use of the fast Fourier transform method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11004-018-9760-z</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1946-8637</orcidid><orcidid>https://orcid.org/0000-0001-6742-8077</orcidid><orcidid>https://orcid.org/0000-0002-9733-284X</orcidid><orcidid>https://orcid.org/0000-0002-0424-7022</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1874-8961
ispartof Mathematical geosciences, 2019-01, Vol.51 (1), p.53-73
issn 1874-8961
1874-8953
language eng
recordid cdi_proquest_journals_2075935993
source Springer Nature
subjects Autoregressive processes
Chemistry and Earth Sciences
Computer Science
Earth and Environmental Science
Earth Sciences
Fast Fourier transformations
Fourier transforms
Geodesy
Geotechnical Engineering & Applied Earth Sciences
Global positioning systems
GPS
Gravity
Hydrogeology
Modelling
Noise
Noise levels
Noise reduction
Physics
Positioning systems
Satellite navigation systems
Signal processing
Statistics for Engineering
Time series
Wiener filtering
title Noise-Dependent Adaption of the Wiener Filter for the GPS Position Time Series
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise-Dependent%20Adaption%20of%20the%20Wiener%20Filter%20for%20the%20GPS%20Position%20Time%20Series&rft.jtitle=Mathematical%20geosciences&rft.au=Klos,%20Anna&rft.date=2019-01-01&rft.volume=51&rft.issue=1&rft.spage=53&rft.epage=73&rft.pages=53-73&rft.issn=1874-8961&rft.eissn=1874-8953&rft_id=info:doi/10.1007/s11004-018-9760-z&rft_dat=%3Cproquest_cross%3E2075935993%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-d25a413cab6aef3434b045a28c0318a57cace752feb4289c4a8642603e636e8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075935993&rft_id=info:pmid/&rfr_iscdi=true