Loading…
Noise-Dependent Adaption of the Wiener Filter for the GPS Position Time Series
Various methods have been used to model the time-varying curves within the global positioning system (GPS) position time series. However, very few consider the level of noise a priori before the seasonal curves are estimated. This study is the first to consider the Wiener filter (WF), already used i...
Saved in:
Published in: | Mathematical geosciences 2019-01, Vol.51 (1), p.53-73 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-d25a413cab6aef3434b045a28c0318a57cace752feb4289c4a8642603e636e8c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-d25a413cab6aef3434b045a28c0318a57cace752feb4289c4a8642603e636e8c3 |
container_end_page | 73 |
container_issue | 1 |
container_start_page | 53 |
container_title | Mathematical geosciences |
container_volume | 51 |
creator | Klos, Anna Bos, Machiel S. Fernandes, Rui M. S. Bogusz, Janusz |
description | Various methods have been used to model the time-varying curves within the global positioning system (GPS) position time series. However, very few consider the level of noise a priori before the seasonal curves are estimated. This study is the first to consider the Wiener filter (WF), already used in geodesy to denoise gravity records, to model the seasonal signals in the GPS position time series. To model the time-varying part of the signal, a first-order autoregressive process is employed. The WF is then adapted to the noise level of the data to model only those time variabilities which are significant. Synthetic and real GPS data is used to demonstrate that this variation of the WF leaves the underlying noise properties intact and provides optimal modeling of seasonal signals. This methodology is referred to as the adaptive WF (AWF) and is both easy to implement and fast, due to the use of the fast Fourier transform method. |
doi_str_mv | 10.1007/s11004-018-9760-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2075935993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075935993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d25a413cab6aef3434b045a28c0318a57cace752feb4289c4a8642603e636e8c3</originalsourceid><addsrcrecordid>eNp1kE9PAjEUxBujiYh-AG-beK622z_bPRIUNCFIAsZjU8pbLYHt2i4H-PQW1ujJ07y8_GYmGYRuKbmnhBQPkSbhmFCFy0ISfDhDPaoKjlUp2PnvLekluopxTYikTNAemk69i4AfoYF6BXWbDVamaZ2vM19l7Sdk7w5qCNnIbdoklQ-n73g2z2Y-uhO5cFvI5hAcxGt0UZlNhJsf7aO30dNi-Iwnr-OX4WCCLRNli1e5MJwya5bSQMU440vChcmVJYwqIwprLBQir2DJc1VabpTkuSQMJJOgLOujuy63Cf5rB7HVa78LdarUOSlEmVpKlijaUTb4GANUuglua8JeU6KPs-luNp1m08fZ9CF58s4TE1t_QPhL_t_0DQR7byw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075935993</pqid></control><display><type>article</type><title>Noise-Dependent Adaption of the Wiener Filter for the GPS Position Time Series</title><source>Springer Nature</source><creator>Klos, Anna ; Bos, Machiel S. ; Fernandes, Rui M. S. ; Bogusz, Janusz</creator><creatorcontrib>Klos, Anna ; Bos, Machiel S. ; Fernandes, Rui M. S. ; Bogusz, Janusz</creatorcontrib><description>Various methods have been used to model the time-varying curves within the global positioning system (GPS) position time series. However, very few consider the level of noise a priori before the seasonal curves are estimated. This study is the first to consider the Wiener filter (WF), already used in geodesy to denoise gravity records, to model the seasonal signals in the GPS position time series. To model the time-varying part of the signal, a first-order autoregressive process is employed. The WF is then adapted to the noise level of the data to model only those time variabilities which are significant. Synthetic and real GPS data is used to demonstrate that this variation of the WF leaves the underlying noise properties intact and provides optimal modeling of seasonal signals. This methodology is referred to as the adaptive WF (AWF) and is both easy to implement and fast, due to the use of the fast Fourier transform method.</description><identifier>ISSN: 1874-8961</identifier><identifier>EISSN: 1874-8953</identifier><identifier>DOI: 10.1007/s11004-018-9760-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Autoregressive processes ; Chemistry and Earth Sciences ; Computer Science ; Earth and Environmental Science ; Earth Sciences ; Fast Fourier transformations ; Fourier transforms ; Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Global positioning systems ; GPS ; Gravity ; Hydrogeology ; Modelling ; Noise ; Noise levels ; Noise reduction ; Physics ; Positioning systems ; Satellite navigation systems ; Signal processing ; Statistics for Engineering ; Time series ; Wiener filtering</subject><ispartof>Mathematical geosciences, 2019-01, Vol.51 (1), p.53-73</ispartof><rights>The Author(s) 2018</rights><rights>Mathematical Geosciences is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d25a413cab6aef3434b045a28c0318a57cace752feb4289c4a8642603e636e8c3</citedby><cites>FETCH-LOGICAL-c359t-d25a413cab6aef3434b045a28c0318a57cace752feb4289c4a8642603e636e8c3</cites><orcidid>0000-0002-1946-8637 ; 0000-0001-6742-8077 ; 0000-0002-9733-284X ; 0000-0002-0424-7022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Klos, Anna</creatorcontrib><creatorcontrib>Bos, Machiel S.</creatorcontrib><creatorcontrib>Fernandes, Rui M. S.</creatorcontrib><creatorcontrib>Bogusz, Janusz</creatorcontrib><title>Noise-Dependent Adaption of the Wiener Filter for the GPS Position Time Series</title><title>Mathematical geosciences</title><addtitle>Math Geosci</addtitle><description>Various methods have been used to model the time-varying curves within the global positioning system (GPS) position time series. However, very few consider the level of noise a priori before the seasonal curves are estimated. This study is the first to consider the Wiener filter (WF), already used in geodesy to denoise gravity records, to model the seasonal signals in the GPS position time series. To model the time-varying part of the signal, a first-order autoregressive process is employed. The WF is then adapted to the noise level of the data to model only those time variabilities which are significant. Synthetic and real GPS data is used to demonstrate that this variation of the WF leaves the underlying noise properties intact and provides optimal modeling of seasonal signals. This methodology is referred to as the adaptive WF (AWF) and is both easy to implement and fast, due to the use of the fast Fourier transform method.</description><subject>Autoregressive processes</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Gravity</subject><subject>Hydrogeology</subject><subject>Modelling</subject><subject>Noise</subject><subject>Noise levels</subject><subject>Noise reduction</subject><subject>Physics</subject><subject>Positioning systems</subject><subject>Satellite navigation systems</subject><subject>Signal processing</subject><subject>Statistics for Engineering</subject><subject>Time series</subject><subject>Wiener filtering</subject><issn>1874-8961</issn><issn>1874-8953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PAjEUxBujiYh-AG-beK622z_bPRIUNCFIAsZjU8pbLYHt2i4H-PQW1ujJ07y8_GYmGYRuKbmnhBQPkSbhmFCFy0ISfDhDPaoKjlUp2PnvLekluopxTYikTNAemk69i4AfoYF6BXWbDVamaZ2vM19l7Sdk7w5qCNnIbdoklQ-n73g2z2Y-uhO5cFvI5hAcxGt0UZlNhJsf7aO30dNi-Iwnr-OX4WCCLRNli1e5MJwya5bSQMU440vChcmVJYwqIwprLBQir2DJc1VabpTkuSQMJJOgLOujuy63Cf5rB7HVa78LdarUOSlEmVpKlijaUTb4GANUuglua8JeU6KPs-luNp1m08fZ9CF58s4TE1t_QPhL_t_0DQR7byw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Klos, Anna</creator><creator>Bos, Machiel S.</creator><creator>Fernandes, Rui M. S.</creator><creator>Bogusz, Janusz</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1946-8637</orcidid><orcidid>https://orcid.org/0000-0001-6742-8077</orcidid><orcidid>https://orcid.org/0000-0002-9733-284X</orcidid><orcidid>https://orcid.org/0000-0002-0424-7022</orcidid></search><sort><creationdate>20190101</creationdate><title>Noise-Dependent Adaption of the Wiener Filter for the GPS Position Time Series</title><author>Klos, Anna ; Bos, Machiel S. ; Fernandes, Rui M. S. ; Bogusz, Janusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d25a413cab6aef3434b045a28c0318a57cace752feb4289c4a8642603e636e8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Autoregressive processes</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Gravity</topic><topic>Hydrogeology</topic><topic>Modelling</topic><topic>Noise</topic><topic>Noise levels</topic><topic>Noise reduction</topic><topic>Physics</topic><topic>Positioning systems</topic><topic>Satellite navigation systems</topic><topic>Signal processing</topic><topic>Statistics for Engineering</topic><topic>Time series</topic><topic>Wiener filtering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klos, Anna</creatorcontrib><creatorcontrib>Bos, Machiel S.</creatorcontrib><creatorcontrib>Fernandes, Rui M. S.</creatorcontrib><creatorcontrib>Bogusz, Janusz</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klos, Anna</au><au>Bos, Machiel S.</au><au>Fernandes, Rui M. S.</au><au>Bogusz, Janusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise-Dependent Adaption of the Wiener Filter for the GPS Position Time Series</atitle><jtitle>Mathematical geosciences</jtitle><stitle>Math Geosci</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>51</volume><issue>1</issue><spage>53</spage><epage>73</epage><pages>53-73</pages><issn>1874-8961</issn><eissn>1874-8953</eissn><abstract>Various methods have been used to model the time-varying curves within the global positioning system (GPS) position time series. However, very few consider the level of noise a priori before the seasonal curves are estimated. This study is the first to consider the Wiener filter (WF), already used in geodesy to denoise gravity records, to model the seasonal signals in the GPS position time series. To model the time-varying part of the signal, a first-order autoregressive process is employed. The WF is then adapted to the noise level of the data to model only those time variabilities which are significant. Synthetic and real GPS data is used to demonstrate that this variation of the WF leaves the underlying noise properties intact and provides optimal modeling of seasonal signals. This methodology is referred to as the adaptive WF (AWF) and is both easy to implement and fast, due to the use of the fast Fourier transform method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11004-018-9760-z</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1946-8637</orcidid><orcidid>https://orcid.org/0000-0001-6742-8077</orcidid><orcidid>https://orcid.org/0000-0002-9733-284X</orcidid><orcidid>https://orcid.org/0000-0002-0424-7022</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1874-8961 |
ispartof | Mathematical geosciences, 2019-01, Vol.51 (1), p.53-73 |
issn | 1874-8961 1874-8953 |
language | eng |
recordid | cdi_proquest_journals_2075935993 |
source | Springer Nature |
subjects | Autoregressive processes Chemistry and Earth Sciences Computer Science Earth and Environmental Science Earth Sciences Fast Fourier transformations Fourier transforms Geodesy Geotechnical Engineering & Applied Earth Sciences Global positioning systems GPS Gravity Hydrogeology Modelling Noise Noise levels Noise reduction Physics Positioning systems Satellite navigation systems Signal processing Statistics for Engineering Time series Wiener filtering |
title | Noise-Dependent Adaption of the Wiener Filter for the GPS Position Time Series |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise-Dependent%20Adaption%20of%20the%20Wiener%20Filter%20for%20the%20GPS%20Position%20Time%20Series&rft.jtitle=Mathematical%20geosciences&rft.au=Klos,%20Anna&rft.date=2019-01-01&rft.volume=51&rft.issue=1&rft.spage=53&rft.epage=73&rft.pages=53-73&rft.issn=1874-8961&rft.eissn=1874-8953&rft_id=info:doi/10.1007/s11004-018-9760-z&rft_dat=%3Cproquest_cross%3E2075935993%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-d25a413cab6aef3434b045a28c0318a57cace752feb4289c4a8642603e636e8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075935993&rft_id=info:pmid/&rfr_iscdi=true |