Loading…
Brane involutions on irreducible holomorphic symplectic manifolds
In the context of irreducible holomorphic symplectic manifolds, we say that (anti)holomorphic (anti)symplectic involutions are brane involutions since their fixed point locus is a brane in the physicists' language, i.e. a submanifold which is either complex or lagrangian submanifold with respec...
Saved in:
Published in: | arXiv.org 2017-09 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the context of irreducible holomorphic symplectic manifolds, we say that (anti)holomorphic (anti)symplectic involutions are brane involutions since their fixed point locus is a brane in the physicists' language, i.e. a submanifold which is either complex or lagrangian submanifold with respect to each of the three K\"ahler structures of the associated hyperk\"ahler structure. Starting from a brane involution on a K3 or abelian surface, one can construct a natural brane involution on its moduli space of sheaves. We study these natural involutions and their relation with the Fourier--Mukai transform. Later, we recall the lattice-theoretical approach to Mirror Symmetry. We provide two ways of obtaining a brane involution on the mirror and we study the behaviour of the brane involutions under both mirror transformations, giving examples in the case of a K3 surface and \(K3^{[2]}\)-type manifolds. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1606.09040 |