Loading…

Iterative Supervised Principal Components

In high-dimensional prediction problems, where the number of features may greatly exceed the number of training instances, fully Bayesian approach with a sparsifying prior is known to produce good results but is computationally challenging. To alleviate this computational burden, we propose to use a...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-10
Main Authors: Piironen, Juho, Vehtari, Aki
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In high-dimensional prediction problems, where the number of features may greatly exceed the number of training instances, fully Bayesian approach with a sparsifying prior is known to produce good results but is computationally challenging. To alleviate this computational burden, we propose to use a preprocessing step where we first apply a dimension reduction to the original data to reduce the number of features to something that is computationally conveniently handled by Bayesian methods. To do this, we propose a new dimension reduction technique, called iterative supervised principal components (ISPC), which combines variable screening and dimension reduction and can be considered as an extension to the existing technique of supervised principal components (SPCs). Our empirical evaluations confirm that, although not foolproof, the proposed approach provides very good results on several microarray benchmark datasets with very affordable computation time, and can also be very useful for visualizing high-dimensional data.
ISSN:2331-8422