Loading…
Phenomenological consequences of superfluid dark matter with baryon-phonon coupling
Recently, a new form of dark matter has been suggested to naturally reproduce the empirically successful aspects of Milgrom's law in galaxies. The dark matter particle candidates are axion-like, with masses of order eV and strong self-interactions. They Bose-Einstein condense into a superfluid...
Saved in:
Published in: | arXiv.org 2017-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, a new form of dark matter has been suggested to naturally reproduce the empirically successful aspects of Milgrom's law in galaxies. The dark matter particle candidates are axion-like, with masses of order eV and strong self-interactions. They Bose-Einstein condense into a superfluid phase in the central regions of galaxy halos. The superfluid phonon excitations in turn couple to baryons and mediate an additional long-range force. For a suitable choice of the superfluid equation of state, this force can mimic Milgrom's law. In this paper we develop in detail some of the main phenomenological consequences of such a formalism, by revisiting the expected dark matter halo profile in the presence of an extended baryon distribution. In particular, we show how rotation curves of both high and low surface brightness galaxies can be reproduced, with a slightly rising rotation curve at large radii in massive high surface brightness galaxies, thus subtly different from Milgrom's law. We finally point out other expected differences with Milgrom's law, in particular in dwarf spheroidal satellite galaxies, tidal dwarf galaxies, and globular clusters, whose Milgromian or Newtonian behavior depends on the position with respect to the superfluid core of the host galaxy. We also expect ultra-diffuse galaxies within galaxy clusters to have velocities slightly above the baryonic Tully-Fisher relation. Finally, we note that, in this framework, photons and gravitons follow the same geodesics, and that galaxy-galaxy lensing, probing larger distances within galaxy halos than rotation curves, should follow predictions closer to the standard cosmological model than those of Milgrom's law. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1711.05748 |