Loading…
Computing by nowhere increasing complexity
A cellular automaton is presented whose governing rule is that the Kolmogorov complexity of a cell's neighborhood may not increase when the cell's present value is substituted for its future value. Using an approximation of this two-dimensional Kolmogorov complexity the underlying automato...
Saved in:
Published in: | arXiv.org 2017-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A cellular automaton is presented whose governing rule is that the Kolmogorov complexity of a cell's neighborhood may not increase when the cell's present value is substituted for its future value. Using an approximation of this two-dimensional Kolmogorov complexity the underlying automaton is shown to be capable of simulating logic circuits. It is also shown to capture trianry logic described by a quandle, a non-associative algebraic structure. A similar automaton whose rule permits at times the increase of a cell's neighborhood complexity is shown to produce animated entities which can be used as information carriers akin to gliders in Conway's game of life. |
---|---|
ISSN: | 2331-8422 |