Loading…
Geometrical Interpretation of Dynamical Phase Transitions in Boundary Driven Systems
Dynamical phase transitions are defined as non-analytic points of the large deviation function of current fluctuations. We show that for boundary driven systems, many dynamical phase transitions can be identified using the geometrical structure of an effective potential of a Hamiltonian, recovered f...
Saved in:
Published in: | arXiv.org 2017-10 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dynamical phase transitions are defined as non-analytic points of the large deviation function of current fluctuations. We show that for boundary driven systems, many dynamical phase transitions can be identified using the geometrical structure of an effective potential of a Hamiltonian, recovered from the macroscopic fluctuation theory description. Using this method we identify new dynamical phase transitions that could not be recovered using existing perturbative methods. Moreover, using the Hamiltonian picture, an experimental scheme is suggested to demonstrate an analog of dynamical phase transitions in linear, rather than exponential, time. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1706.04126 |