Loading…
Geometrical Interpretation of Dynamical Phase Transitions in Boundary Driven Systems
Dynamical phase transitions are defined as non-analytic points of the large deviation function of current fluctuations. We show that for boundary driven systems, many dynamical phase transitions can be identified using the geometrical structure of an effective potential of a Hamiltonian, recovered f...
Saved in:
Published in: | arXiv.org 2017-10 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Shpielberg, Ohad |
description | Dynamical phase transitions are defined as non-analytic points of the large deviation function of current fluctuations. We show that for boundary driven systems, many dynamical phase transitions can be identified using the geometrical structure of an effective potential of a Hamiltonian, recovered from the macroscopic fluctuation theory description. Using this method we identify new dynamical phase transitions that could not be recovered using existing perturbative methods. Moreover, using the Hamiltonian picture, an experimental scheme is suggested to demonstrate an analog of dynamical phase transitions in linear, rather than exponential, time. |
doi_str_mv | 10.48550/arxiv.1706.04126 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076982184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076982184</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-ddb0cdbfb301410f130a6be90cf8b17a41f0c8dd91b00d887e933d073e4311193</originalsourceid><addsrcrecordid>eNotjU9LwzAcQIMgOOY-gLeA587fL0mb9KibzsFAwd5H2iSYsaYzSYf99v49vcOD9wi5QVgKVZZwp-OnPy9RQrUEgay6IDPGORZKMHZFFikdAIBVkpUln5FmY4fe5ug7faTbkG08RZt19kOgg6PrKej-172-62RpE3VI_scm6gN9GMZgdJzoOvqzDfRtStn26ZpcOn1MdvHPOWmeHpvVc7F72WxX97tCl0wUxrTQmda1HFAgOOSgq9bW0DnVotQCHXTKmBpbAKOUtDXnBiS3giNizefk9i97isPHaFPeH4Yxhu_jnoGsasVQCf4FCy5Sjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076982184</pqid></control><display><type>article</type><title>Geometrical Interpretation of Dynamical Phase Transitions in Boundary Driven Systems</title><source>Publicly Available Content Database</source><creator>Shpielberg, Ohad</creator><creatorcontrib>Shpielberg, Ohad</creatorcontrib><description>Dynamical phase transitions are defined as non-analytic points of the large deviation function of current fluctuations. We show that for boundary driven systems, many dynamical phase transitions can be identified using the geometrical structure of an effective potential of a Hamiltonian, recovered from the macroscopic fluctuation theory description. Using this method we identify new dynamical phase transitions that could not be recovered using existing perturbative methods. Moreover, using the Hamiltonian picture, an experimental scheme is suggested to demonstrate an analog of dynamical phase transitions in linear, rather than exponential, time.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1706.04126</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Fluctuation theory ; Phase transitions</subject><ispartof>arXiv.org, 2017-10</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076982184?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Shpielberg, Ohad</creatorcontrib><title>Geometrical Interpretation of Dynamical Phase Transitions in Boundary Driven Systems</title><title>arXiv.org</title><description>Dynamical phase transitions are defined as non-analytic points of the large deviation function of current fluctuations. We show that for boundary driven systems, many dynamical phase transitions can be identified using the geometrical structure of an effective potential of a Hamiltonian, recovered from the macroscopic fluctuation theory description. Using this method we identify new dynamical phase transitions that could not be recovered using existing perturbative methods. Moreover, using the Hamiltonian picture, an experimental scheme is suggested to demonstrate an analog of dynamical phase transitions in linear, rather than exponential, time.</description><subject>Fluctuation theory</subject><subject>Phase transitions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU9LwzAcQIMgOOY-gLeA587fL0mb9KibzsFAwd5H2iSYsaYzSYf99v49vcOD9wi5QVgKVZZwp-OnPy9RQrUEgay6IDPGORZKMHZFFikdAIBVkpUln5FmY4fe5ug7faTbkG08RZt19kOgg6PrKej-172-62RpE3VI_scm6gN9GMZgdJzoOvqzDfRtStn26ZpcOn1MdvHPOWmeHpvVc7F72WxX97tCl0wUxrTQmda1HFAgOOSgq9bW0DnVotQCHXTKmBpbAKOUtDXnBiS3giNizefk9i97isPHaFPeH4Yxhu_jnoGsasVQCf4FCy5Sjg</recordid><startdate>20171023</startdate><enddate>20171023</enddate><creator>Shpielberg, Ohad</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171023</creationdate><title>Geometrical Interpretation of Dynamical Phase Transitions in Boundary Driven Systems</title><author>Shpielberg, Ohad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-ddb0cdbfb301410f130a6be90cf8b17a41f0c8dd91b00d887e933d073e4311193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Fluctuation theory</topic><topic>Phase transitions</topic><toplevel>online_resources</toplevel><creatorcontrib>Shpielberg, Ohad</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shpielberg, Ohad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical Interpretation of Dynamical Phase Transitions in Boundary Driven Systems</atitle><jtitle>arXiv.org</jtitle><date>2017-10-23</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Dynamical phase transitions are defined as non-analytic points of the large deviation function of current fluctuations. We show that for boundary driven systems, many dynamical phase transitions can be identified using the geometrical structure of an effective potential of a Hamiltonian, recovered from the macroscopic fluctuation theory description. Using this method we identify new dynamical phase transitions that could not be recovered using existing perturbative methods. Moreover, using the Hamiltonian picture, an experimental scheme is suggested to demonstrate an analog of dynamical phase transitions in linear, rather than exponential, time.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1706.04126</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076982184 |
source | Publicly Available Content Database |
subjects | Fluctuation theory Phase transitions |
title | Geometrical Interpretation of Dynamical Phase Transitions in Boundary Driven Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20Interpretation%20of%20Dynamical%20Phase%20Transitions%20in%20Boundary%20Driven%20Systems&rft.jtitle=arXiv.org&rft.au=Shpielberg,%20Ohad&rft.date=2017-10-23&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1706.04126&rft_dat=%3Cproquest%3E2076982184%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-ddb0cdbfb301410f130a6be90cf8b17a41f0c8dd91b00d887e933d073e4311193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076982184&rft_id=info:pmid/&rfr_iscdi=true |