Loading…

Geometrical Interpretation of Dynamical Phase Transitions in Boundary Driven Systems

Dynamical phase transitions are defined as non-analytic points of the large deviation function of current fluctuations. We show that for boundary driven systems, many dynamical phase transitions can be identified using the geometrical structure of an effective potential of a Hamiltonian, recovered f...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-10
Main Author: Shpielberg, Ohad
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Shpielberg, Ohad
description Dynamical phase transitions are defined as non-analytic points of the large deviation function of current fluctuations. We show that for boundary driven systems, many dynamical phase transitions can be identified using the geometrical structure of an effective potential of a Hamiltonian, recovered from the macroscopic fluctuation theory description. Using this method we identify new dynamical phase transitions that could not be recovered using existing perturbative methods. Moreover, using the Hamiltonian picture, an experimental scheme is suggested to demonstrate an analog of dynamical phase transitions in linear, rather than exponential, time.
doi_str_mv 10.48550/arxiv.1706.04126
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076982184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076982184</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-ddb0cdbfb301410f130a6be90cf8b17a41f0c8dd91b00d887e933d073e4311193</originalsourceid><addsrcrecordid>eNotjU9LwzAcQIMgOOY-gLeA587fL0mb9KibzsFAwd5H2iSYsaYzSYf99v49vcOD9wi5QVgKVZZwp-OnPy9RQrUEgay6IDPGORZKMHZFFikdAIBVkpUln5FmY4fe5ug7faTbkG08RZt19kOgg6PrKej-172-62RpE3VI_scm6gN9GMZgdJzoOvqzDfRtStn26ZpcOn1MdvHPOWmeHpvVc7F72WxX97tCl0wUxrTQmda1HFAgOOSgq9bW0DnVotQCHXTKmBpbAKOUtDXnBiS3giNizefk9i97isPHaFPeH4Yxhu_jnoGsasVQCf4FCy5Sjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076982184</pqid></control><display><type>article</type><title>Geometrical Interpretation of Dynamical Phase Transitions in Boundary Driven Systems</title><source>Publicly Available Content Database</source><creator>Shpielberg, Ohad</creator><creatorcontrib>Shpielberg, Ohad</creatorcontrib><description>Dynamical phase transitions are defined as non-analytic points of the large deviation function of current fluctuations. We show that for boundary driven systems, many dynamical phase transitions can be identified using the geometrical structure of an effective potential of a Hamiltonian, recovered from the macroscopic fluctuation theory description. Using this method we identify new dynamical phase transitions that could not be recovered using existing perturbative methods. Moreover, using the Hamiltonian picture, an experimental scheme is suggested to demonstrate an analog of dynamical phase transitions in linear, rather than exponential, time.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1706.04126</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Fluctuation theory ; Phase transitions</subject><ispartof>arXiv.org, 2017-10</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076982184?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Shpielberg, Ohad</creatorcontrib><title>Geometrical Interpretation of Dynamical Phase Transitions in Boundary Driven Systems</title><title>arXiv.org</title><description>Dynamical phase transitions are defined as non-analytic points of the large deviation function of current fluctuations. We show that for boundary driven systems, many dynamical phase transitions can be identified using the geometrical structure of an effective potential of a Hamiltonian, recovered from the macroscopic fluctuation theory description. Using this method we identify new dynamical phase transitions that could not be recovered using existing perturbative methods. Moreover, using the Hamiltonian picture, an experimental scheme is suggested to demonstrate an analog of dynamical phase transitions in linear, rather than exponential, time.</description><subject>Fluctuation theory</subject><subject>Phase transitions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU9LwzAcQIMgOOY-gLeA587fL0mb9KibzsFAwd5H2iSYsaYzSYf99v49vcOD9wi5QVgKVZZwp-OnPy9RQrUEgay6IDPGORZKMHZFFikdAIBVkpUln5FmY4fe5ug7faTbkG08RZt19kOgg6PrKej-172-62RpE3VI_scm6gN9GMZgdJzoOvqzDfRtStn26ZpcOn1MdvHPOWmeHpvVc7F72WxX97tCl0wUxrTQmda1HFAgOOSgq9bW0DnVotQCHXTKmBpbAKOUtDXnBiS3giNizefk9i97isPHaFPeH4Yxhu_jnoGsasVQCf4FCy5Sjg</recordid><startdate>20171023</startdate><enddate>20171023</enddate><creator>Shpielberg, Ohad</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171023</creationdate><title>Geometrical Interpretation of Dynamical Phase Transitions in Boundary Driven Systems</title><author>Shpielberg, Ohad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-ddb0cdbfb301410f130a6be90cf8b17a41f0c8dd91b00d887e933d073e4311193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Fluctuation theory</topic><topic>Phase transitions</topic><toplevel>online_resources</toplevel><creatorcontrib>Shpielberg, Ohad</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shpielberg, Ohad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical Interpretation of Dynamical Phase Transitions in Boundary Driven Systems</atitle><jtitle>arXiv.org</jtitle><date>2017-10-23</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Dynamical phase transitions are defined as non-analytic points of the large deviation function of current fluctuations. We show that for boundary driven systems, many dynamical phase transitions can be identified using the geometrical structure of an effective potential of a Hamiltonian, recovered from the macroscopic fluctuation theory description. Using this method we identify new dynamical phase transitions that could not be recovered using existing perturbative methods. Moreover, using the Hamiltonian picture, an experimental scheme is suggested to demonstrate an analog of dynamical phase transitions in linear, rather than exponential, time.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1706.04126</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076982184
source Publicly Available Content Database
subjects Fluctuation theory
Phase transitions
title Geometrical Interpretation of Dynamical Phase Transitions in Boundary Driven Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20Interpretation%20of%20Dynamical%20Phase%20Transitions%20in%20Boundary%20Driven%20Systems&rft.jtitle=arXiv.org&rft.au=Shpielberg,%20Ohad&rft.date=2017-10-23&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1706.04126&rft_dat=%3Cproquest%3E2076982184%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-ddb0cdbfb301410f130a6be90cf8b17a41f0c8dd91b00d887e933d073e4311193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076982184&rft_id=info:pmid/&rfr_iscdi=true