Loading…

Free Boundary Minimal Surfaces in the Unit Ball With Low Cohomogeneity

We study free boundary minimal surfaces in the unit ball of low cohomogeneity. For each pair of positive integers \((m,n)\) such that \(m, n >1\) and \(m+n\geq 8\), we construct a free boundary minimal surface \(\Sigma_{m, n} \subset B^{m+n}\)(1) invariant under \(O(m)\times O(n)\). When \(m+n

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-01
Main Authors: Freidin, Brian, Gulian, Mamikon, McGrath, Peter
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study free boundary minimal surfaces in the unit ball of low cohomogeneity. For each pair of positive integers \((m,n)\) such that \(m, n >1\) and \(m+n\geq 8\), we construct a free boundary minimal surface \(\Sigma_{m, n} \subset B^{m+n}\)(1) invariant under \(O(m)\times O(n)\). When \(m+n
ISSN:2331-8422