Loading…
Free Boundary Minimal Surfaces in the Unit Ball With Low Cohomogeneity
We study free boundary minimal surfaces in the unit ball of low cohomogeneity. For each pair of positive integers \((m,n)\) such that \(m, n >1\) and \(m+n\geq 8\), we construct a free boundary minimal surface \(\Sigma_{m, n} \subset B^{m+n}\)(1) invariant under \(O(m)\times O(n)\). When \(m+n
Saved in:
Published in: | arXiv.org 2016-01 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Freidin, Brian Gulian, Mamikon McGrath, Peter |
description | We study free boundary minimal surfaces in the unit ball of low cohomogeneity. For each pair of positive integers \((m,n)\) such that \(m, n >1\) and \(m+n\geq 8\), we construct a free boundary minimal surface \(\Sigma_{m, n} \subset B^{m+n}\)(1) invariant under \(O(m)\times O(n)\). When \(m+n |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078152944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078152944</sourcerecordid><originalsourceid>FETCH-proquest_journals_20781529443</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwLqRJa-vaYnHQScWxBL21KWmi-UH69jr4AE5n-M6MRIzzNCkzxhYkdm6glLJNwfKcR6RpLCJUJui7sBMcpZajUHAKthM3dCA1-B7hoqWHSigFV-l7OJg31KY3o3mgRumnFZl3QjmMf12SdbM71_vkac0roPPtYILVX2oZLco0Z9ss4_9dH1N5OoM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078152944</pqid></control><display><type>article</type><title>Free Boundary Minimal Surfaces in the Unit Ball With Low Cohomogeneity</title><source>Publicly Available Content Database</source><creator>Freidin, Brian ; Gulian, Mamikon ; McGrath, Peter</creator><creatorcontrib>Freidin, Brian ; Gulian, Mamikon ; McGrath, Peter</creatorcontrib><description>We study free boundary minimal surfaces in the unit ball of low cohomogeneity. For each pair of positive integers \((m,n)\) such that \(m, n >1\) and \(m+n\geq 8\), we construct a free boundary minimal surface \(\Sigma_{m, n} \subset B^{m+n}\)(1) invariant under \(O(m)\times O(n)\). When \(m+n<8\), an instability of the resulting equation allows us to find an infinite family \(\{\Sigma_{m,n, k}\}_{k\in \mathbb{N}}\) of such surfaces. In particular, \(\{\Sigma_{2, 2, k}\}_{k\in \mathbb{N}}\) is a family of solid tori which converges to the cone over the Clifford Torus as \(k\) goes to infinity. These examples indicate that a smooth compactness theorem for Free Boundary Minimal Surfaces due to Fraser and Li does not generally extend to higher dimensions. For each \(n\geq 3\), we prove there is a unique nonplanar \(SO(n)\)-invariant free boundary minimal surface (a "catenoid") \(\Sigma_n \subset B^n(1)\). These surfaces generalize the "critical catenoid" in \(B^3(1)\) studied by Fraser and Schoen.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Free boundaries ; Integers ; Invariants ; Minimal surfaces ; Stability ; Toruses</subject><ispartof>arXiv.org, 2016-01</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2078152944?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Freidin, Brian</creatorcontrib><creatorcontrib>Gulian, Mamikon</creatorcontrib><creatorcontrib>McGrath, Peter</creatorcontrib><title>Free Boundary Minimal Surfaces in the Unit Ball With Low Cohomogeneity</title><title>arXiv.org</title><description>We study free boundary minimal surfaces in the unit ball of low cohomogeneity. For each pair of positive integers \((m,n)\) such that \(m, n >1\) and \(m+n\geq 8\), we construct a free boundary minimal surface \(\Sigma_{m, n} \subset B^{m+n}\)(1) invariant under \(O(m)\times O(n)\). When \(m+n<8\), an instability of the resulting equation allows us to find an infinite family \(\{\Sigma_{m,n, k}\}_{k\in \mathbb{N}}\) of such surfaces. In particular, \(\{\Sigma_{2, 2, k}\}_{k\in \mathbb{N}}\) is a family of solid tori which converges to the cone over the Clifford Torus as \(k\) goes to infinity. These examples indicate that a smooth compactness theorem for Free Boundary Minimal Surfaces due to Fraser and Li does not generally extend to higher dimensions. For each \(n\geq 3\), we prove there is a unique nonplanar \(SO(n)\)-invariant free boundary minimal surface (a "catenoid") \(\Sigma_n \subset B^n(1)\). These surfaces generalize the "critical catenoid" in \(B^3(1)\) studied by Fraser and Schoen.</description><subject>Free boundaries</subject><subject>Integers</subject><subject>Invariants</subject><subject>Minimal surfaces</subject><subject>Stability</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwLqRJa-vaYnHQScWxBL21KWmi-UH69jr4AE5n-M6MRIzzNCkzxhYkdm6glLJNwfKcR6RpLCJUJui7sBMcpZajUHAKthM3dCA1-B7hoqWHSigFV-l7OJg31KY3o3mgRumnFZl3QjmMf12SdbM71_vkac0roPPtYILVX2oZLco0Z9ss4_9dH1N5OoM</recordid><startdate>20160127</startdate><enddate>20160127</enddate><creator>Freidin, Brian</creator><creator>Gulian, Mamikon</creator><creator>McGrath, Peter</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160127</creationdate><title>Free Boundary Minimal Surfaces in the Unit Ball With Low Cohomogeneity</title><author>Freidin, Brian ; Gulian, Mamikon ; McGrath, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20781529443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Free boundaries</topic><topic>Integers</topic><topic>Invariants</topic><topic>Minimal surfaces</topic><topic>Stability</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Freidin, Brian</creatorcontrib><creatorcontrib>Gulian, Mamikon</creatorcontrib><creatorcontrib>McGrath, Peter</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freidin, Brian</au><au>Gulian, Mamikon</au><au>McGrath, Peter</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Free Boundary Minimal Surfaces in the Unit Ball With Low Cohomogeneity</atitle><jtitle>arXiv.org</jtitle><date>2016-01-27</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We study free boundary minimal surfaces in the unit ball of low cohomogeneity. For each pair of positive integers \((m,n)\) such that \(m, n >1\) and \(m+n\geq 8\), we construct a free boundary minimal surface \(\Sigma_{m, n} \subset B^{m+n}\)(1) invariant under \(O(m)\times O(n)\). When \(m+n<8\), an instability of the resulting equation allows us to find an infinite family \(\{\Sigma_{m,n, k}\}_{k\in \mathbb{N}}\) of such surfaces. In particular, \(\{\Sigma_{2, 2, k}\}_{k\in \mathbb{N}}\) is a family of solid tori which converges to the cone over the Clifford Torus as \(k\) goes to infinity. These examples indicate that a smooth compactness theorem for Free Boundary Minimal Surfaces due to Fraser and Li does not generally extend to higher dimensions. For each \(n\geq 3\), we prove there is a unique nonplanar \(SO(n)\)-invariant free boundary minimal surface (a "catenoid") \(\Sigma_n \subset B^n(1)\). These surfaces generalize the "critical catenoid" in \(B^3(1)\) studied by Fraser and Schoen.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2078152944 |
source | Publicly Available Content Database |
subjects | Free boundaries Integers Invariants Minimal surfaces Stability Toruses |
title | Free Boundary Minimal Surfaces in the Unit Ball With Low Cohomogeneity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A20%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Free%20Boundary%20Minimal%20Surfaces%20in%20the%20Unit%20Ball%20With%20Low%20Cohomogeneity&rft.jtitle=arXiv.org&rft.au=Freidin,%20Brian&rft.date=2016-01-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078152944%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20781529443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2078152944&rft_id=info:pmid/&rfr_iscdi=true |