Loading…
Separation of Relatively Quasiconvex Subgroups
Suppose that all hyperbolic groups are residually finite. The following statements follow: In relatively hyperbolic groups with peripheral structures consisting of finitely generated nilpotent subgroups, quasiconvex subgroups are separable; Geometrically finite subgroups of non-uniform lattices in r...
Saved in:
Published in: | arXiv.org 2010-05 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Suppose that all hyperbolic groups are residually finite. The following statements follow: In relatively hyperbolic groups with peripheral structures consisting of finitely generated nilpotent subgroups, quasiconvex subgroups are separable; Geometrically finite subgroups of non-uniform lattices in rank one symmetric spaces are separable; Kleinian groups are subgroup separable. We also show that LERF for finite volume hyperbolic 3-manifolds would follow from LERF for closed hyperbolic 3-manifolds. The method is to reduce, via combination and filling theorems, the separability of a quasiconvex subgroup of a relatively hyperbolic group G to the separability of a quasiconvex subgroup of a hyperbolic quotient G/N. A result of Agol, Groves, and Manning is then applied. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0811.4001 |