Loading…

Self-organizing structures in immiscible crystals

Spinodal decomposition process in the system of immiscible PbTe/CdTe compounds is analyzed as an example of a self-organizing structure. The immiscibility of the constituents leads to the observed morphological transformations like anisotropy driven formation of quantum dots and nanowires, and to th...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-05
Main Authors: Mińkowski, Marcin, Załuska-Kotur, Magdalena A, Turski, Łukasz A, Karczewski, Grzegorz
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mińkowski, Marcin
Załuska-Kotur, Magdalena A
Turski, Łukasz A
Karczewski, Grzegorz
description Spinodal decomposition process in the system of immiscible PbTe/CdTe compounds is analyzed as an example of a self-organizing structure. The immiscibility of the constituents leads to the observed morphological transformations like anisotropy driven formation of quantum dots and nanowires, and to the phase separation at the highest temperatures. Proposed model accomplishes bulk and surface diffusion together with the anisotropic mobility of material components. We analyze its properties by kinetic Monte Carlo simulations and show that it is able to reproduce all of the structures observed experimentally in the process of PbTe/CdTe growth. We show that studied mechanisms of dynamic processes play different role in the creation of zero--, one--, two-- and finally three-dimensional structures. The shape of grown structures is different for relatively thick multilayers when bulk diffusion cooperates with the anisotropic mobility, in annealed structure when isotropic bulk diffusion only decides about the process and finally for thin multilayers when surface diffusion is the most decisive factor. We compare our results with experimentally grown systems and show that proposed model explains the diversity of observed structures.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079952093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079952093</sourcerecordid><originalsourceid>FETCH-proquest_journals_20799520933</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwDE7NSdPNL0pPzMusysxLVyguKSpNLiktSi1WyMxTyMzNzSxOzkzKSVVILqosLknMKeZhYE0DUqm8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RgbmlpamRgaWxMnCoAAP40Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079952093</pqid></control><display><type>article</type><title>Self-organizing structures in immiscible crystals</title><source>Publicly Available Content (ProQuest)</source><creator>Mińkowski, Marcin ; Załuska-Kotur, Magdalena A ; Turski, Łukasz A ; Karczewski, Grzegorz</creator><creatorcontrib>Mińkowski, Marcin ; Załuska-Kotur, Magdalena A ; Turski, Łukasz A ; Karczewski, Grzegorz</creatorcontrib><description>Spinodal decomposition process in the system of immiscible PbTe/CdTe compounds is analyzed as an example of a self-organizing structure. The immiscibility of the constituents leads to the observed morphological transformations like anisotropy driven formation of quantum dots and nanowires, and to the phase separation at the highest temperatures. Proposed model accomplishes bulk and surface diffusion together with the anisotropic mobility of material components. We analyze its properties by kinetic Monte Carlo simulations and show that it is able to reproduce all of the structures observed experimentally in the process of PbTe/CdTe growth. We show that studied mechanisms of dynamic processes play different role in the creation of zero--, one--, two-- and finally three-dimensional structures. The shape of grown structures is different for relatively thick multilayers when bulk diffusion cooperates with the anisotropic mobility, in annealed structure when isotropic bulk diffusion only decides about the process and finally for thin multilayers when surface diffusion is the most decisive factor. We compare our results with experimentally grown systems and show that proposed model explains the diversity of observed structures.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anisotropy ; Computer simulation ; Crystal structure ; Diffusion ; Intermetallic compounds ; Lead tellurides ; Miscibility ; Multilayers ; Nanowires ; Phase separation ; Quantum dots ; Spinodal decomposition ; Surface diffusion</subject><ispartof>arXiv.org, 2016-05</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2079952093?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Mińkowski, Marcin</creatorcontrib><creatorcontrib>Załuska-Kotur, Magdalena A</creatorcontrib><creatorcontrib>Turski, Łukasz A</creatorcontrib><creatorcontrib>Karczewski, Grzegorz</creatorcontrib><title>Self-organizing structures in immiscible crystals</title><title>arXiv.org</title><description>Spinodal decomposition process in the system of immiscible PbTe/CdTe compounds is analyzed as an example of a self-organizing structure. The immiscibility of the constituents leads to the observed morphological transformations like anisotropy driven formation of quantum dots and nanowires, and to the phase separation at the highest temperatures. Proposed model accomplishes bulk and surface diffusion together with the anisotropic mobility of material components. We analyze its properties by kinetic Monte Carlo simulations and show that it is able to reproduce all of the structures observed experimentally in the process of PbTe/CdTe growth. We show that studied mechanisms of dynamic processes play different role in the creation of zero--, one--, two-- and finally three-dimensional structures. The shape of grown structures is different for relatively thick multilayers when bulk diffusion cooperates with the anisotropic mobility, in annealed structure when isotropic bulk diffusion only decides about the process and finally for thin multilayers when surface diffusion is the most decisive factor. We compare our results with experimentally grown systems and show that proposed model explains the diversity of observed structures.</description><subject>Anisotropy</subject><subject>Computer simulation</subject><subject>Crystal structure</subject><subject>Diffusion</subject><subject>Intermetallic compounds</subject><subject>Lead tellurides</subject><subject>Miscibility</subject><subject>Multilayers</subject><subject>Nanowires</subject><subject>Phase separation</subject><subject>Quantum dots</subject><subject>Spinodal decomposition</subject><subject>Surface diffusion</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwDE7NSdPNL0pPzMusysxLVyguKSpNLiktSi1WyMxTyMzNzSxOzkzKSVVILqosLknMKeZhYE0DUqm8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RgbmlpamRgaWxMnCoAAP40Tw</recordid><startdate>20160525</startdate><enddate>20160525</enddate><creator>Mińkowski, Marcin</creator><creator>Załuska-Kotur, Magdalena A</creator><creator>Turski, Łukasz A</creator><creator>Karczewski, Grzegorz</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160525</creationdate><title>Self-organizing structures in immiscible crystals</title><author>Mińkowski, Marcin ; Załuska-Kotur, Magdalena A ; Turski, Łukasz A ; Karczewski, Grzegorz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20799520933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anisotropy</topic><topic>Computer simulation</topic><topic>Crystal structure</topic><topic>Diffusion</topic><topic>Intermetallic compounds</topic><topic>Lead tellurides</topic><topic>Miscibility</topic><topic>Multilayers</topic><topic>Nanowires</topic><topic>Phase separation</topic><topic>Quantum dots</topic><topic>Spinodal decomposition</topic><topic>Surface diffusion</topic><toplevel>online_resources</toplevel><creatorcontrib>Mińkowski, Marcin</creatorcontrib><creatorcontrib>Załuska-Kotur, Magdalena A</creatorcontrib><creatorcontrib>Turski, Łukasz A</creatorcontrib><creatorcontrib>Karczewski, Grzegorz</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mińkowski, Marcin</au><au>Załuska-Kotur, Magdalena A</au><au>Turski, Łukasz A</au><au>Karczewski, Grzegorz</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Self-organizing structures in immiscible crystals</atitle><jtitle>arXiv.org</jtitle><date>2016-05-25</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Spinodal decomposition process in the system of immiscible PbTe/CdTe compounds is analyzed as an example of a self-organizing structure. The immiscibility of the constituents leads to the observed morphological transformations like anisotropy driven formation of quantum dots and nanowires, and to the phase separation at the highest temperatures. Proposed model accomplishes bulk and surface diffusion together with the anisotropic mobility of material components. We analyze its properties by kinetic Monte Carlo simulations and show that it is able to reproduce all of the structures observed experimentally in the process of PbTe/CdTe growth. We show that studied mechanisms of dynamic processes play different role in the creation of zero--, one--, two-- and finally three-dimensional structures. The shape of grown structures is different for relatively thick multilayers when bulk diffusion cooperates with the anisotropic mobility, in annealed structure when isotropic bulk diffusion only decides about the process and finally for thin multilayers when surface diffusion is the most decisive factor. We compare our results with experimentally grown systems and show that proposed model explains the diversity of observed structures.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2079952093
source Publicly Available Content (ProQuest)
subjects Anisotropy
Computer simulation
Crystal structure
Diffusion
Intermetallic compounds
Lead tellurides
Miscibility
Multilayers
Nanowires
Phase separation
Quantum dots
Spinodal decomposition
Surface diffusion
title Self-organizing structures in immiscible crystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Self-organizing%20structures%20in%20immiscible%20crystals&rft.jtitle=arXiv.org&rft.au=Mi%C5%84kowski,%20Marcin&rft.date=2016-05-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2079952093%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20799520933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2079952093&rft_id=info:pmid/&rfr_iscdi=true