Loading…
Simplicial volume of links from link diagrams
The hyperbolic volume of a link complement is known to be unchanged when a half-twist is added to a link diagram, and a suitable 3-punctured sphere is present in the complement. We generalize this to the simplicial volume of link complements by analyzing the corresponding toroidal decompositions. We...
Saved in:
Published in: | arXiv.org 2016-06 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The hyperbolic volume of a link complement is known to be unchanged when a half-twist is added to a link diagram, and a suitable 3-punctured sphere is present in the complement. We generalize this to the simplicial volume of link complements by analyzing the corresponding toroidal decompositions. We then use it to prove a refined upper bound for the volume in terms of twists of various lengths for links. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1512.08316 |