Loading…
Three-pile Sharing Nim and the quadratic time winning strategy
We study a variant of 3-pile Nim in which a move consists of taking tokens from one pile and, instead of removing then, topping up on a smaller pile provided that the destination pile does not have more tokens then the source pile after the move. We discover a situation in which each column of two-d...
Saved in:
Published in: | arXiv.org 2016-05 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study a variant of 3-pile Nim in which a move consists of taking tokens from one pile and, instead of removing then, topping up on a smaller pile provided that the destination pile does not have more tokens then the source pile after the move. We discover a situation in which each column of two-dimensional array of Sprague-Grundy values is a palindrome. We establish a formula for P-positions by which winning moves can be computed in quadratic time. We prove a formula for positions whose Sprague-Grundy values are 1 and estimate the distribution of those positions whose nim-values are g. We discuss the periodicity of nim-sequences that seem to be bounded. |
---|---|
ISSN: | 2331-8422 |