Loading…
Generalized periods and mirror symmetry in dimensions n>3
The predictions of the Mirror Symmetry are extended in dimensions n>3 and are proven for projective complete intersections Calabi-Yau varieties. Precisely, we prove that the total collection of rational Gromov-Witten invariants of such variety can be expressed in terms of certain invariants of a...
Saved in:
Published in: | arXiv.org 1999-03 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The predictions of the Mirror Symmetry are extended in dimensions n>3 and are proven for projective complete intersections Calabi-Yau varieties. Precisely, we prove that the total collection of rational Gromov-Witten invariants of such variety can be expressed in terms of certain invariants of a new generalization of variation of Hodge structures attached to the dual variety. To formulate the general principles of Mirror Symmetry in arbitrary dimension it is necessary to introduce the ``extended moduli space of complex structures'' M. An analog M\to H*(X,C)[n] of the classical period map is described and is shown to be a local isomorphism. The invariants of the generalized variations of Hodge structures are introduced. It is proven that their generating function satisfies the system of WDVV-equations exactly as in the case of Gromov-Witten invariants. The basic technical tool utilized is the Deformation theory. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.9903124 |