Loading…
A Bayesian hidden Markov mixture model to detect overexpressed chromosome regions
In this study, we propose a hidden Markov mixture model for the analysis of gene expression measurements mapped to chromosome locations. These expression values represent preprocessed light intensities observed in each probe of Affymetrix oligonucleotide arrays. Here, the algorithm BLAT is used to a...
Saved in:
Published in: | arXiv.org 2016-09 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we propose a hidden Markov mixture model for the analysis of gene expression measurements mapped to chromosome locations. These expression values represent preprocessed light intensities observed in each probe of Affymetrix oligonucleotide arrays. Here, the algorithm BLAT is used to align thousands of probe sequences to each chromosome. The main goal is to identify genome regions associated with high expression values which define clusters composed by consecutive observations. The proposed model assumes a mixture distribution in which one of the components (the one with the highest expected value) is supposed to accommodate the overexpressed clusters. The model takes advantage of the serial structure of the data and uses the distance information between neighbours to infer about the existence of a Markov dependence. This dependence is crucially important in the detection of overexpressed regions. We propose and discuss a Markov chain Monte Carlo algorithm to fit the model. Finally, the proposed methodology is used to analyse five data sets representing three types of cancer (breast, ovarian and brain). |
---|---|
ISSN: | 2331-8422 |