Loading…
Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion
We consider an initial-boundary value problem for the incompressible chemotaxis-Navier-Stokes equations generalizing the porous-medium-type diffusion model \( \quad n_t+u\cdot\nabla n=\Delta n^m-\nabla\cdot(n\chi(c)\nabla c), \) \( \quad c_t+u\cdot\nabla c=\Delta c-nf(c), \) \( \quad u_t+\kappa(u\cd...
Saved in:
Published in: | arXiv.org 2015-01 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider an initial-boundary value problem for the incompressible chemotaxis-Navier-Stokes equations generalizing the porous-medium-type diffusion model \( \quad n_t+u\cdot\nabla n=\Delta n^m-\nabla\cdot(n\chi(c)\nabla c), \) \( \quad c_t+u\cdot\nabla c=\Delta c-nf(c), \) \( \quad u_t+\kappa(u\cdot\nabla)u=\Delta u+\nabla P+n\nabla\Phi, \) \( \quad \nabla\cdot u=0, \) in a bounded convex domain \(\Omega\subset\mathbb{R}^3\). It is proved that if \(m\geq\frac{2}{3}\), \(\kappa\in\mathbb{R}\), \(0 |
---|---|
ISSN: | 2331-8422 |