Loading…

Tubulin bond energies and microtubule biomechanics determined from nanoindentation in silico

Microtubules, the primary components of the chromosome segregation machinery, are stabilized by longitudinal and lateral non-covalent bonds between the tubulin subunits. However, the thermodynamics of these bonds and the microtubule physico-chemical properties are poorly understood. Here, we explore...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2015-01
Main Authors: Kononova, Olga, Kholodov, Yaroslav, Theisen, Kelly E, Marx, Kenneth A, Dima, Ruxandra I, Ataullakhanov, Fazly I, Grishchuk, Ekaterina L, Barsegov, Valeri
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microtubules, the primary components of the chromosome segregation machinery, are stabilized by longitudinal and lateral non-covalent bonds between the tubulin subunits. However, the thermodynamics of these bonds and the microtubule physico-chemical properties are poorly understood. Here, we explore the biomechanics of microtubule polymers using multiscale computational modeling and nanoindentations in silico of a contiguous microtubule fragment. A close match between the simulated and experimental force-deformation spectra enabled us to correlate the microtubule biomechanics with dynamic structural transitions at the nanoscale. Our mechanical testing revealed that the compressed MT behaves as a system of rigid elements interconnected through a network of lateral and longitudinal elastic bonds. The initial regime of continuous elastic deformation of the microtubule is followed by the transition regime, during which the microtubule lattice undergoes discrete structural changes, which include first the reversible dissociation of lateral bonds followed by irreversible dissociation of the longitudinal bonds. We have determined the free energies of dissociation of the lateral (6.9+/-0.4 kcal/mol) and longitudinal (14.9+/-1.5 kcal/mol) tubulin-tubulin bonds. These values in conjunction with the large flexural rigidity of tubulin protofilaments obtained (18,000-26,000 pN*nm^2), support the idea that the disassembling microtubule is capable of generating a large mechanical force to move chromosomes during cell division. Our computational modeling offers a comprehensive quantitative platform to link molecular tubulin characteristics with the physiological behavior of microtubules. The developed in silico nanoindentation method provides a powerful tool for the exploration of biomechanical properties of other cytoskeletal and multiprotein assemblies
ISSN:2331-8422
DOI:10.48550/arxiv.1501.06562