Loading…
An order-theoretic characterization of the Howard-Bachmann-hierarchy
In this article we provide an intrinsic characterization of the famous Howard-Bachmann ordinal in terms of a natural well-partial-ordering by showing that this ordinal can be realized as a maximal order type of a class of generalized trees with respect to a homeomorphic embeddability relation. We us...
Saved in:
Published in: | arXiv.org 2015-01 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article we provide an intrinsic characterization of the famous Howard-Bachmann ordinal in terms of a natural well-partial-ordering by showing that this ordinal can be realized as a maximal order type of a class of generalized trees with respect to a homeomorphic embeddability relation. We use our calculations to draw some conclusions about some corresponding subsystems of second order arithmetic. All these subsystems deal with versions of light-face \(\Pi^1_1\)-comprehension |
---|---|
ISSN: | 2331-8422 |