Loading…
Breaking so(4) symmetry without degeneracy lift
We argue that in the quantum motion of a scalar particle of mass "m" on S^3_R perturbed by the trigonometric Scarf potential (Scarf I) with one internal quantized dimensionless parameter, \ell, the 3D orbital angular momentum, and another, an external scale introducing continuous parameter...
Saved in:
Published in: | arXiv.org 2014-02 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We argue that in the quantum motion of a scalar particle of mass "m" on S^3_R perturbed by the trigonometric Scarf potential (Scarf I) with one internal quantized dimensionless parameter, \ell, the 3D orbital angular momentum, and another, an external scale introducing continuous parameter, B, a loss of the geometric hyper-spherical so(4) symmetry of the free motion can occur that leaves intact the unperturbed {\mathcal N}^2-fold degeneracy patterns, with {\mathcal N}=(\ell +n+1) and n denoting the nodes number of the wave function. Our point is that although the number of degenerate states for any {\mathcal N} matches dimensionality of an irreducible so(4) representation space, the corresponding set of wave functions do not transform irreducibly under any so(4). Indeed, in expanding the Scarf I wave functions in the basis of properly identified so(4) representation functions, we find power series in the perturbation parameter, B, where 4D angular momenta K\in [\ell , {\mathcal N}-1] contribute up to the order \left(\frac{2mR^2B}{\hbar^2}\right)^{{\mathcal N}-1-K}. In this fashion, we work out an explicit example on a symmetry breakdown by external scales that retains the degeneracy. The scheme extends to so(d+2) for any d. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1305.1281 |