Loading…

From the Samuelson Volatility Effect to a Samuelson Correlation Effect: Evidence from Crude Oil Calendar Spread Options

We introduce a multi-factor stochastic volatility model based on the CIR/Heston stochastic volatility process. In order to capture the Samuelson effect displayed by commodity futures contracts, we add expiry-dependent exponential damping factors to their volatility coefficients. The pricing of singl...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2015-02
Main Authors: Schneider, Lorenz, Tavin, Bertrand
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce a multi-factor stochastic volatility model based on the CIR/Heston stochastic volatility process. In order to capture the Samuelson effect displayed by commodity futures contracts, we add expiry-dependent exponential damping factors to their volatility coefficients. The pricing of single underlying European options on futures contracts is straightforward and can incorporate the volatility smile or skew observed in the market. We calculate the joint characteristic function of two futures contracts in the model in analytic form and use the one-dimensional Fourier inversion method of Caldana and Fusai (JBF 2013) to price calendar spread options. The model leads to stochastic correlation between the returns of two futures contracts. We illustrate the distribution of this correlation in an example. We then propose analytical expressions to obtain the copula and copula density directly from the joint characteristic function of a pair of futures. These expressions are convenient to analyze the term-structure of dependence between the two futures produced by the model. In an empirical application we calibrate the proposed model to volatility surfaces of vanilla options on WTI. In this application we provide evidence that the model is able to produce the desired stylized facts in terms of volatility and dependence. In a separate appendix, we give guidance for the implementation of the proposed model and the Fourier inversion results by means of one and two-dimensional FFT methods.
ISSN:2331-8422