Loading…
Invariant means on Boolean inverse monoids
The classical theory of invariant means, which plays an important role in the theory of paradoxical decompositions, is based upon what are usually termed `pseudogroups'. Such pseudogroups are in fact concrete examples of the Boolean inverse monoids which give rise to etale topological groupoids...
Saved in:
Published in: | arXiv.org 2015-03 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The classical theory of invariant means, which plays an important role in the theory of paradoxical decompositions, is based upon what are usually termed `pseudogroups'. Such pseudogroups are in fact concrete examples of the Boolean inverse monoids which give rise to etale topological groupoids under non-commutative Stone duality. We accordingly initiate the theory of invariant means on arbitrary Boolean inverse monoids. Our main theorem is a characterization of when a Boolean inverse monoid admits an invariant mean. This generalizes the classical Tarski alternative proved, for example, by de la Harpe and Skandalis, but using different methods. |
---|---|
ISSN: | 2331-8422 |