Loading…
On minimal norms on \(M_n\)
In this note, we show that for each minimal norm \(N(\cdot)\) on the algebra \(M_n\) of all \(n \times n\) complex matrices, there exist norms \(\|\cdot\|_1\) and \(\|\cdot\|_2\) on \({\mathbb C}^n\) such that $$N(A)=\max\{\|Ax\|_2: \|x\|_1=1, x\in {\mathbb C}^n\}$$ for all \(A \in M_n\). This may b...
Saved in:
Published in: | arXiv.org 2007-08 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this note, we show that for each minimal norm \(N(\cdot)\) on the algebra \(M_n\) of all \(n \times n\) complex matrices, there exist norms \(\|\cdot\|_1\) and \(\|\cdot\|_2\) on \({\mathbb C}^n\) such that $$N(A)=\max\{\|Ax\|_2: \|x\|_1=1, x\in {\mathbb C}^n\}$$ for all \(A \in M_n\). This may be regarded as an extension of a known result on characterization of minimal algebra norms. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0708.3358 |