The numerical rank of Krylov matrices

In this paper we expose interesting features of Krylov matrices and Vandermonde matrices. Let S be a large symmetric matrix of order n. Let x be a real n-vector, and let Kℓ denote the related n×ℓ Krylov matrix. The question considered in this paper is how the numerical rank of Kℓ grows as ℓ increase...

Full description

Saved in:
Bibliographic Details
Published in:Linear algebra and its applications 2017-09, Vol.528, p.185-205
Main Author: Dax, Achiya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-4cbbe7197ead63f28af5fd39335fc054bcb083347326d46a0c2569b7589c9553
cites cdi_FETCH-LOGICAL-c325t-4cbbe7197ead63f28af5fd39335fc054bcb083347326d46a0c2569b7589c9553
container_end_page 205
container_issue
container_start_page 185
container_title Linear algebra and its applications
container_volume 528
creator Dax, Achiya
description In this paper we expose interesting features of Krylov matrices and Vandermonde matrices. Let S be a large symmetric matrix of order n. Let x be a real n-vector, and let Kℓ denote the related n×ℓ Krylov matrix. The question considered in this paper is how the numerical rank of Kℓ grows as ℓ increases. The key for answering this question lies in the close link between Kℓ and the n×ℓ Vandermonde matrix which is generated by the eigenvalues of S. Analysis of large Vandermonde matrices shows that the numerical rank is expected to remain much smaller than ℓ. The proof is based on partition theorems and clustering theorems. The basic tool is a new matrix equality: The Vandermonde–Pascal–Toeplitz equality. The actual numerical rank of a Vandermonde (or Krylov) matrix depends on the distribution of the eigenvalues, but often the rank is remarkable small. Numerical experiments illustrate these points. The observation that the numerical rank of Krylov matrices stays small has important practical consequences.
doi_str_mv 10.1016/j.laa.2016.07.022
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2082036503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379516302944</els_id><sourcerecordid>2082036503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-4cbbe7197ead63f28af5fd39335fc054bcb083347326d46a0c2569b7589c9553</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFd_gLeCeGydZJqkxZMsfuGCl72HNE2wtR9r0l3Yf2-WevY0w_A-M8NDyC2FnAIVD13ea52z2OYgc2DsjCS0lJjRkotzkgCwIkNZ8UtyFUIHAIUElpD77ZdNx_1gfWt0n3o9fqeTSz_8sZ8O6aDnOLfhmlw43Qd781dXZPvyvF2_ZZvP1_f10yYzyPicFaauraSVtLoR6FipHXcNVojcGeBFbWooEQuJTDSF0GAYF1UteVmZinNckbtl7c5PP3sbZtVNez_Gi4pByQAFB4wpuqSMn0Lw1qmdbwftj4qCOslQnYoy1EmGAqmijMg8LoyN3x9a61UwrR2NbVpvzayaqf2H_gVwQ2TR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082036503</pqid></control><display><type>article</type><title>The numerical rank of Krylov matrices</title><source>Elsevier ScienceDirect Freedom Collection 2023</source><creator>Dax, Achiya</creator><creatorcontrib>Dax, Achiya</creatorcontrib><description>In this paper we expose interesting features of Krylov matrices and Vandermonde matrices. Let S be a large symmetric matrix of order n. Let x be a real n-vector, and let Kℓ denote the related n×ℓ Krylov matrix. The question considered in this paper is how the numerical rank of Kℓ grows as ℓ increases. The key for answering this question lies in the close link between Kℓ and the n×ℓ Vandermonde matrix which is generated by the eigenvalues of S. Analysis of large Vandermonde matrices shows that the numerical rank is expected to remain much smaller than ℓ. The proof is based on partition theorems and clustering theorems. The basic tool is a new matrix equality: The Vandermonde–Pascal–Toeplitz equality. The actual numerical rank of a Vandermonde (or Krylov) matrix depends on the distribution of the eigenvalues, but often the rank is remarkable small. Numerical experiments illustrate these points. The observation that the numerical rank of Krylov matrices stays small has important practical consequences.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2016.07.022</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Clustering ; Clustering theorems ; Eigenvalues ; Krylov matrices ; Krylov subspaces ; Lie groups ; Linear algebra ; Mathematical analysis ; Matrix ; Matrix methods ; Numerical rank ; Partition theorems ; Proof theory ; Symmetric matrices ; The Vandermonde–Pascal–Toeplitz equality ; Theorems ; Vandermonde matrices</subject><ispartof>Linear algebra and its applications, 2017-09, Vol.528, p.185-205</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Sep 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-4cbbe7197ead63f28af5fd39335fc054bcb083347326d46a0c2569b7589c9553</citedby><cites>FETCH-LOGICAL-c325t-4cbbe7197ead63f28af5fd39335fc054bcb083347326d46a0c2569b7589c9553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail></links><search><creatorcontrib>Dax, Achiya</creatorcontrib><title>The numerical rank of Krylov matrices</title><title>Linear algebra and its applications</title><description>In this paper we expose interesting features of Krylov matrices and Vandermonde matrices. Let S be a large symmetric matrix of order n. Let x be a real n-vector, and let Kℓ denote the related n×ℓ Krylov matrix. The question considered in this paper is how the numerical rank of Kℓ grows as ℓ increases. The key for answering this question lies in the close link between Kℓ and the n×ℓ Vandermonde matrix which is generated by the eigenvalues of S. Analysis of large Vandermonde matrices shows that the numerical rank is expected to remain much smaller than ℓ. The proof is based on partition theorems and clustering theorems. The basic tool is a new matrix equality: The Vandermonde–Pascal–Toeplitz equality. The actual numerical rank of a Vandermonde (or Krylov) matrix depends on the distribution of the eigenvalues, but often the rank is remarkable small. Numerical experiments illustrate these points. The observation that the numerical rank of Krylov matrices stays small has important practical consequences.</description><subject>Clustering</subject><subject>Clustering theorems</subject><subject>Eigenvalues</subject><subject>Krylov matrices</subject><subject>Krylov subspaces</subject><subject>Lie groups</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Matrix</subject><subject>Matrix methods</subject><subject>Numerical rank</subject><subject>Partition theorems</subject><subject>Proof theory</subject><subject>Symmetric matrices</subject><subject>The Vandermonde–Pascal–Toeplitz equality</subject><subject>Theorems</subject><subject>Vandermonde matrices</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMoWFd_gLeCeGydZJqkxZMsfuGCl72HNE2wtR9r0l3Yf2-WevY0w_A-M8NDyC2FnAIVD13ea52z2OYgc2DsjCS0lJjRkotzkgCwIkNZ8UtyFUIHAIUElpD77ZdNx_1gfWt0n3o9fqeTSz_8sZ8O6aDnOLfhmlw43Qd781dXZPvyvF2_ZZvP1_f10yYzyPicFaauraSVtLoR6FipHXcNVojcGeBFbWooEQuJTDSF0GAYF1UteVmZinNckbtl7c5PP3sbZtVNez_Gi4pByQAFB4wpuqSMn0Lw1qmdbwftj4qCOslQnYoy1EmGAqmijMg8LoyN3x9a61UwrR2NbVpvzayaqf2H_gVwQ2TR</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Dax, Achiya</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170901</creationdate><title>The numerical rank of Krylov matrices</title><author>Dax, Achiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-4cbbe7197ead63f28af5fd39335fc054bcb083347326d46a0c2569b7589c9553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Clustering</topic><topic>Clustering theorems</topic><topic>Eigenvalues</topic><topic>Krylov matrices</topic><topic>Krylov subspaces</topic><topic>Lie groups</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Matrix</topic><topic>Matrix methods</topic><topic>Numerical rank</topic><topic>Partition theorems</topic><topic>Proof theory</topic><topic>Symmetric matrices</topic><topic>The Vandermonde–Pascal–Toeplitz equality</topic><topic>Theorems</topic><topic>Vandermonde matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dax, Achiya</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dax, Achiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The numerical rank of Krylov matrices</atitle><jtitle>Linear algebra and its applications</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>528</volume><spage>185</spage><epage>205</epage><pages>185-205</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>In this paper we expose interesting features of Krylov matrices and Vandermonde matrices. Let S be a large symmetric matrix of order n. Let x be a real n-vector, and let Kℓ denote the related n×ℓ Krylov matrix. The question considered in this paper is how the numerical rank of Kℓ grows as ℓ increases. The key for answering this question lies in the close link between Kℓ and the n×ℓ Vandermonde matrix which is generated by the eigenvalues of S. Analysis of large Vandermonde matrices shows that the numerical rank is expected to remain much smaller than ℓ. The proof is based on partition theorems and clustering theorems. The basic tool is a new matrix equality: The Vandermonde–Pascal–Toeplitz equality. The actual numerical rank of a Vandermonde (or Krylov) matrix depends on the distribution of the eigenvalues, but often the rank is remarkable small. Numerical experiments illustrate these points. The observation that the numerical rank of Krylov matrices stays small has important practical consequences.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2016.07.022</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2017-09, Vol.528, p.185-205
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2082036503
source Elsevier ScienceDirect Freedom Collection 2023
subjects Clustering
Clustering theorems
Eigenvalues
Krylov matrices
Krylov subspaces
Lie groups
Linear algebra
Mathematical analysis
Matrix
Matrix methods
Numerical rank
Partition theorems
Proof theory
Symmetric matrices
The Vandermonde–Pascal–Toeplitz equality
Theorems
Vandermonde matrices
title The numerical rank of Krylov matrices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-10T05%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20numerical%20rank%20of%20Krylov%20matrices&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Dax,%20Achiya&rft.date=2017-09-01&rft.volume=528&rft.spage=185&rft.epage=205&rft.pages=185-205&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2016.07.022&rft_dat=%3Cproquest_cross%3E2082036503%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-4cbbe7197ead63f28af5fd39335fc054bcb083347326d46a0c2569b7589c9553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2082036503&rft_id=info:pmid/&rfr_iscdi=true