The numerical rank of Krylov matrices
In this paper we expose interesting features of Krylov matrices and Vandermonde matrices. Let S be a large symmetric matrix of order n. Let x be a real n-vector, and let Kℓ denote the related n×ℓ Krylov matrix. The question considered in this paper is how the numerical rank of Kℓ grows as ℓ increase...
Saved in:
Published in: | Linear algebra and its applications 2017-09, Vol.528, p.185-205 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c325t-4cbbe7197ead63f28af5fd39335fc054bcb083347326d46a0c2569b7589c9553 |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-4cbbe7197ead63f28af5fd39335fc054bcb083347326d46a0c2569b7589c9553 |
container_end_page | 205 |
container_issue | |
container_start_page | 185 |
container_title | Linear algebra and its applications |
container_volume | 528 |
creator | Dax, Achiya |
description | In this paper we expose interesting features of Krylov matrices and Vandermonde matrices. Let S be a large symmetric matrix of order n. Let x be a real n-vector, and let Kℓ denote the related n×ℓ Krylov matrix. The question considered in this paper is how the numerical rank of Kℓ grows as ℓ increases. The key for answering this question lies in the close link between Kℓ and the n×ℓ Vandermonde matrix which is generated by the eigenvalues of S. Analysis of large Vandermonde matrices shows that the numerical rank is expected to remain much smaller than ℓ. The proof is based on partition theorems and clustering theorems. The basic tool is a new matrix equality: The Vandermonde–Pascal–Toeplitz equality. The actual numerical rank of a Vandermonde (or Krylov) matrix depends on the distribution of the eigenvalues, but often the rank is remarkable small. Numerical experiments illustrate these points. The observation that the numerical rank of Krylov matrices stays small has important practical consequences. |
doi_str_mv | 10.1016/j.laa.2016.07.022 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2082036503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379516302944</els_id><sourcerecordid>2082036503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-4cbbe7197ead63f28af5fd39335fc054bcb083347326d46a0c2569b7589c9553</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFd_gLeCeGydZJqkxZMsfuGCl72HNE2wtR9r0l3Yf2-WevY0w_A-M8NDyC2FnAIVD13ea52z2OYgc2DsjCS0lJjRkotzkgCwIkNZ8UtyFUIHAIUElpD77ZdNx_1gfWt0n3o9fqeTSz_8sZ8O6aDnOLfhmlw43Qd781dXZPvyvF2_ZZvP1_f10yYzyPicFaauraSVtLoR6FipHXcNVojcGeBFbWooEQuJTDSF0GAYF1UteVmZinNckbtl7c5PP3sbZtVNez_Gi4pByQAFB4wpuqSMn0Lw1qmdbwftj4qCOslQnYoy1EmGAqmijMg8LoyN3x9a61UwrR2NbVpvzayaqf2H_gVwQ2TR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082036503</pqid></control><display><type>article</type><title>The numerical rank of Krylov matrices</title><source>Elsevier ScienceDirect Freedom Collection 2023</source><creator>Dax, Achiya</creator><creatorcontrib>Dax, Achiya</creatorcontrib><description>In this paper we expose interesting features of Krylov matrices and Vandermonde matrices. Let S be a large symmetric matrix of order n. Let x be a real n-vector, and let Kℓ denote the related n×ℓ Krylov matrix. The question considered in this paper is how the numerical rank of Kℓ grows as ℓ increases. The key for answering this question lies in the close link between Kℓ and the n×ℓ Vandermonde matrix which is generated by the eigenvalues of S. Analysis of large Vandermonde matrices shows that the numerical rank is expected to remain much smaller than ℓ. The proof is based on partition theorems and clustering theorems. The basic tool is a new matrix equality: The Vandermonde–Pascal–Toeplitz equality. The actual numerical rank of a Vandermonde (or Krylov) matrix depends on the distribution of the eigenvalues, but often the rank is remarkable small. Numerical experiments illustrate these points. The observation that the numerical rank of Krylov matrices stays small has important practical consequences.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2016.07.022</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Clustering ; Clustering theorems ; Eigenvalues ; Krylov matrices ; Krylov subspaces ; Lie groups ; Linear algebra ; Mathematical analysis ; Matrix ; Matrix methods ; Numerical rank ; Partition theorems ; Proof theory ; Symmetric matrices ; The Vandermonde–Pascal–Toeplitz equality ; Theorems ; Vandermonde matrices</subject><ispartof>Linear algebra and its applications, 2017-09, Vol.528, p.185-205</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Sep 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-4cbbe7197ead63f28af5fd39335fc054bcb083347326d46a0c2569b7589c9553</citedby><cites>FETCH-LOGICAL-c325t-4cbbe7197ead63f28af5fd39335fc054bcb083347326d46a0c2569b7589c9553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail></links><search><creatorcontrib>Dax, Achiya</creatorcontrib><title>The numerical rank of Krylov matrices</title><title>Linear algebra and its applications</title><description>In this paper we expose interesting features of Krylov matrices and Vandermonde matrices. Let S be a large symmetric matrix of order n. Let x be a real n-vector, and let Kℓ denote the related n×ℓ Krylov matrix. The question considered in this paper is how the numerical rank of Kℓ grows as ℓ increases. The key for answering this question lies in the close link between Kℓ and the n×ℓ Vandermonde matrix which is generated by the eigenvalues of S. Analysis of large Vandermonde matrices shows that the numerical rank is expected to remain much smaller than ℓ. The proof is based on partition theorems and clustering theorems. The basic tool is a new matrix equality: The Vandermonde–Pascal–Toeplitz equality. The actual numerical rank of a Vandermonde (or Krylov) matrix depends on the distribution of the eigenvalues, but often the rank is remarkable small. Numerical experiments illustrate these points. The observation that the numerical rank of Krylov matrices stays small has important practical consequences.</description><subject>Clustering</subject><subject>Clustering theorems</subject><subject>Eigenvalues</subject><subject>Krylov matrices</subject><subject>Krylov subspaces</subject><subject>Lie groups</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Matrix</subject><subject>Matrix methods</subject><subject>Numerical rank</subject><subject>Partition theorems</subject><subject>Proof theory</subject><subject>Symmetric matrices</subject><subject>The Vandermonde–Pascal–Toeplitz equality</subject><subject>Theorems</subject><subject>Vandermonde matrices</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMoWFd_gLeCeGydZJqkxZMsfuGCl72HNE2wtR9r0l3Yf2-WevY0w_A-M8NDyC2FnAIVD13ea52z2OYgc2DsjCS0lJjRkotzkgCwIkNZ8UtyFUIHAIUElpD77ZdNx_1gfWt0n3o9fqeTSz_8sZ8O6aDnOLfhmlw43Qd781dXZPvyvF2_ZZvP1_f10yYzyPicFaauraSVtLoR6FipHXcNVojcGeBFbWooEQuJTDSF0GAYF1UteVmZinNckbtl7c5PP3sbZtVNez_Gi4pByQAFB4wpuqSMn0Lw1qmdbwftj4qCOslQnYoy1EmGAqmijMg8LoyN3x9a61UwrR2NbVpvzayaqf2H_gVwQ2TR</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Dax, Achiya</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170901</creationdate><title>The numerical rank of Krylov matrices</title><author>Dax, Achiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-4cbbe7197ead63f28af5fd39335fc054bcb083347326d46a0c2569b7589c9553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Clustering</topic><topic>Clustering theorems</topic><topic>Eigenvalues</topic><topic>Krylov matrices</topic><topic>Krylov subspaces</topic><topic>Lie groups</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Matrix</topic><topic>Matrix methods</topic><topic>Numerical rank</topic><topic>Partition theorems</topic><topic>Proof theory</topic><topic>Symmetric matrices</topic><topic>The Vandermonde–Pascal–Toeplitz equality</topic><topic>Theorems</topic><topic>Vandermonde matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dax, Achiya</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dax, Achiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The numerical rank of Krylov matrices</atitle><jtitle>Linear algebra and its applications</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>528</volume><spage>185</spage><epage>205</epage><pages>185-205</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>In this paper we expose interesting features of Krylov matrices and Vandermonde matrices. Let S be a large symmetric matrix of order n. Let x be a real n-vector, and let Kℓ denote the related n×ℓ Krylov matrix. The question considered in this paper is how the numerical rank of Kℓ grows as ℓ increases. The key for answering this question lies in the close link between Kℓ and the n×ℓ Vandermonde matrix which is generated by the eigenvalues of S. Analysis of large Vandermonde matrices shows that the numerical rank is expected to remain much smaller than ℓ. The proof is based on partition theorems and clustering theorems. The basic tool is a new matrix equality: The Vandermonde–Pascal–Toeplitz equality. The actual numerical rank of a Vandermonde (or Krylov) matrix depends on the distribution of the eigenvalues, but often the rank is remarkable small. Numerical experiments illustrate these points. The observation that the numerical rank of Krylov matrices stays small has important practical consequences.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2016.07.022</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2017-09, Vol.528, p.185-205 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2082036503 |
source | Elsevier ScienceDirect Freedom Collection 2023 |
subjects | Clustering Clustering theorems Eigenvalues Krylov matrices Krylov subspaces Lie groups Linear algebra Mathematical analysis Matrix Matrix methods Numerical rank Partition theorems Proof theory Symmetric matrices The Vandermonde–Pascal–Toeplitz equality Theorems Vandermonde matrices |
title | The numerical rank of Krylov matrices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-10T05%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20numerical%20rank%20of%20Krylov%20matrices&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Dax,%20Achiya&rft.date=2017-09-01&rft.volume=528&rft.spage=185&rft.epage=205&rft.pages=185-205&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2016.07.022&rft_dat=%3Cproquest_cross%3E2082036503%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-4cbbe7197ead63f28af5fd39335fc054bcb083347326d46a0c2569b7589c9553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2082036503&rft_id=info:pmid/&rfr_iscdi=true |