Loading…
Scattering through a straight quantum waveguide with combined boundary conditions
Scattering through a straight two-dimensional quantum waveguide Rx(0,d) with Dirichlet boundary conditions on (-\infty,0)x{y=0} \cup (0,\infty)x{y=d} and Neumann boundary condition on (-infty,0)x{y=d} \cup (0,\infty)x{y=0} is considered using stationary scattering theory. The existence of a matching...
Saved in:
Published in: | arXiv.org 2014-08 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Scattering through a straight two-dimensional quantum waveguide Rx(0,d) with Dirichlet boundary conditions on (-\infty,0)x{y=0} \cup (0,\infty)x{y=d} and Neumann boundary condition on (-infty,0)x{y=d} \cup (0,\infty)x{y=0} is considered using stationary scattering theory. The existence of a matching conditions solution at x=0 is proved. The use of stationary scattering theory is justified showing its relation to the wave packets motion. As an illustration, the matching conditions are also solved numerically and the transition probabilities are shown. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1408.3958 |