Loading…
A problem of Wang on Davenport constant for the multiplicative semigroup of the quotient ring of \(\F_2[x]\)
Let \(\F_q[x]\) be the ring of polynomials over the finite field \(\F_q\), and let \(f\) be a polynomial of \(\F_q[x]\). Let \(R=\frac{\F_q[x]}{(f)}\) be a quotient ring of \(\F_q[x]\) with \(0\neq R\neq \F_q[x]\). Let \(\mathcal{S}_R\) be the multiplicative semigroup of the ring \(R\), and let \({\...
Saved in:
Published in: | arXiv.org 2015-07 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let \(\F_q[x]\) be the ring of polynomials over the finite field \(\F_q\), and let \(f\) be a polynomial of \(\F_q[x]\). Let \(R=\frac{\F_q[x]}{(f)}\) be a quotient ring of \(\F_q[x]\) with \(0\neq R\neq \F_q[x]\). Let \(\mathcal{S}_R\) be the multiplicative semigroup of the ring \(R\), and let \({\rm U}(\mathcal{S}_R)\) be the group of units of \(\mathcal{S}_R\). The Davenport constant \({\rm D}(\mathcal{S}_R)\) of the multiplicative semigroup \(\mathcal{S}_R\) is the least positive integer \(\ell\) such that for any \(\ell\) polynomials \(g_1,g_2,\ldots,g_{\ell}\in \F_q[x]\), there exists a subset \(I\subsetneq [1,\ell]\) with $$\prod\limits_{i\in I} g_i \equiv \prod\limits_{i=1}^{\ell} g_i\pmod f.$$ In this manuscript, we proved that for the case of \(q=2\), $${\rm D}({\rm U}(\mathcal{S}_R))\leq {\rm D}(\mathcal{S}_R)\leq {\rm D}({\rm U}(\mathcal{S}_R))+\delta_f,$$ where \begin{displaymath} \delta_f=\left\{\begin{array}{ll} 0 & \textrm{if \(\gcd(x*(x+1_{\mathbb{F}_2}),\ f)=1_{\F_{2}}\)}\\ 1 & \textrm{if \(\gcd(x*(x+1_{\mathbb{F}_2}),\ f)\in \{x, \ x+1_{\mathbb{F}_2}\}\)}\\ 2 & \textrm{if \(gcd(x*(x+1_{\mathbb{F}_2}),f)=x*(x+1_{\mathbb{F}_2}) \)}\\ \end{array} \right. \end{displaymath} which partially answered an open problem of Wang on Davenport constant for the multiplicative semigroup of \(\frac{\F_q[x]}{(f)}\) (G.Q. Wang, \emph{Davenport constant for semigroups II,} Journal of Number Theory, 155 (2015) 124--134). |
---|---|
ISSN: | 2331-8422 |