Loading…

Numerical Simulations of Snake Dissipative Solitons in Complex Cubic-Quintic Ginzburg-Landau Equation

Numerical simulations of the complex cubic-quintic Ginzburg-Landau equation (CCQGLE), a canonical equation governing the weakly nonlinear behavior of dissipative systems in a wide variety of disciplines, reveal five entirely novel classes of pulse or solitary waves solutions, viz. pulsating, creepin...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2013-04
Main Authors: Mancas, Stefan C, Khanal, Harihar
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Numerical simulations of the complex cubic-quintic Ginzburg-Landau equation (CCQGLE), a canonical equation governing the weakly nonlinear behavior of dissipative systems in a wide variety of disciplines, reveal five entirely novel classes of pulse or solitary waves solutions, viz. pulsating, creeping, snaking, erupting, and chaotical solitons. Here, we develop a theoretical framework for analyzing the full spatio-temporal structure of one class of dissipative solution (snaking soliton) of the CCQGLE using the variational approximation technique and the dynamical systems theory. The qualitative behavior of the snaking soliton is investigated using the numerical simulations of (a) the full nonlinear complex partial differential equation and (b) a system of three ordinary differential equations resulting from the variational approximation.
ISSN:2331-8422