Loading…
Solving the noncommutative Batalin-Vilkovisky equation
I show that a summation over ribbon graphs with legs gives the construction of the solutions to the noncommutative Batalin-Vilkovisky equation, including the equivariant version. This generalizes the known construction of A-infinity algebra via summation over ribbon trees. These solutions give natur...
Saved in:
Published in: | arXiv.org 2010-04 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | I show that a summation over ribbon graphs with legs gives the construction of the solutions to the noncommutative Batalin-Vilkovisky equation, including the equivariant version. This generalizes the known construction of A-infinity algebra via summation over ribbon trees. These solutions give naturally the supersymmetric matrix action functionals, which are the gl(N)-equivariantly closed differential forms on the matrix spaces, which were introduced in one of my previous papers "Noncommmutative Batalin-Vilkovisky geometry and Matrix integrals" (arXiv:0912.5484, electronic CNRS preprint hal-00102085(28/09/2006)). |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1004.2253 |