Loading…
Tate modules of universal p-divisible groups
A p-divisible group over a complete local domain determines a Galois representation on the Tate module of its generic fibre. We determine the image of this representation for the universal deformation in mixed characteristic of a bi-infinitesimal group and for the p-rank strata of the universal defo...
Saved in:
Published in: | arXiv.org 2008-03 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A p-divisible group over a complete local domain determines a Galois representation on the Tate module of its generic fibre. We determine the image of this representation for the universal deformation in mixed characteristic of a bi-infinitesimal group and for the p-rank strata of the universal deformation in positive characteristic of an infinitesimal group. The method is a reduction to the known case of one-dimensional groups by a deformation argument based on properties of the stratification by Newton polygons. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0803.1390 |