Loading…
The chart based approach to studying the global structure of a spacetime induces a coordinate invariant boundary
I demonstrate that the chart based approach to the study of the global structure of Lorentzian manifolds induces a homeomorphism of the manifold into a topological space as an open dense set. The topological boundary of this homeomorphism is a chart independent boundary of ideal points equipped with...
Saved in:
Published in: | arXiv.org 2014-02 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | I demonstrate that the chart based approach to the study of the global structure of Lorentzian manifolds induces a homeomorphism of the manifold into a topological space as an open dense set. The topological boundary of this homeomorphism is a chart independent boundary of ideal points equipped with a topological structure and a physically motivated classification. I show that this new boundary contains all other boundaries that can be presented as the topological boundary of an envelopment. Hence, in particular, it is a generalisation of Penrose's conformal boundary. I provide three detailed examples: the conformal compactification of Minkowski spacetime, Scott and Szekeres' analysis of the Curzon singularity and Beyer and Hennig's analysis of smooth Gowdy symmetric generalised Taub-NUT spacetimes. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1401.1287 |