Loading…
Computational complexity of time-dependent density functional theory
Time-dependent density functional theory (TDDFT) is rapidly emerging as a premier method for solving dynamical many-body problems in physics and chemistry. The mathematical foundations of TDDFT are established through the formal existence of a fictitious non-interacting system (known as the Kohn-Sha...
Saved in:
Published in: | arXiv.org 2014-08 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Time-dependent density functional theory (TDDFT) is rapidly emerging as a premier method for solving dynamical many-body problems in physics and chemistry. The mathematical foundations of TDDFT are established through the formal existence of a fictitious non-interacting system (known as the Kohn-Sham system), which can reproduce the one-electron reduced probability density of the actual system. We build upon these works and show that on the interior of the domain of existence, the Kohn-Sham system can be efficiently obtained given the time-dependent density. Since a quantum computer can efficiently produce such time-dependent densities, we present a polynomial time quantum algorithm to generate the time-dependent Kohn-Sham potential with controllable error bounds. As a consequence, in contrast to the known intractability result for ground state density functional theory (DFT), the computation of the necessary time-dependent potentials given the initial state is in the complexity class described by bounded error quantum computation in polynomial time (BQP). |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1310.1428 |