Loading…

Learning with Pseudo-Ensembles

We formalize the notion of a pseudo-ensemble, a (possibly infinite) collection of child models spawned from a parent model by perturbing it according to some noise process. E.g., dropout (Hinton et. al, 2012) in a deep neural network trains a pseudo-ensemble of child subnetworks generated by randoml...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-12
Main Authors: Bachman, Philip, Alsharif, Ouais, Precup, Doina
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We formalize the notion of a pseudo-ensemble, a (possibly infinite) collection of child models spawned from a parent model by perturbing it according to some noise process. E.g., dropout (Hinton et. al, 2012) in a deep neural network trains a pseudo-ensemble of child subnetworks generated by randomly masking nodes in the parent network. We present a novel regularizer based on making the behavior of a pseudo-ensemble robust with respect to the noise process generating it. In the fully-supervised setting, our regularizer matches the performance of dropout. But, unlike dropout, our regularizer naturally extends to the semi-supervised setting, where it produces state-of-the-art results. We provide a case study in which we transform the Recursive Neural Tensor Network of (Socher et. al, 2013) into a pseudo-ensemble, which significantly improves its performance on a real-world sentiment analysis benchmark.
ISSN:2331-8422