Loading…
Extendability of continuous maps is undecidable
We consider two basic problems of algebraic topology, the extension problem and the computation of higher homotopy groups, from the point of view of computability and computational complexity. The extension problem is the following: Given topological spaces X and Y, a subspace A\subseteq X, and a (c...
Saved in:
Published in: | arXiv.org 2013-02 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider two basic problems of algebraic topology, the extension problem and the computation of higher homotopy groups, from the point of view of computability and computational complexity. The extension problem is the following: Given topological spaces X and Y, a subspace A\subseteq X, and a (continuous) map f:A->Y, decide whether f can be extended to a continuous map \bar{f}:X->Y. All spaces are given as finite simplicial complexes and the map f is simplicial. Recent positive algorithmic results, proved in a series of companion papers, show that for (k-1)-connected Y, k>=2, the extension problem is algorithmically solvable if the dimension of X is at most 2k-1, and even in polynomial time when k is fixed. Here we show that the condition \dim X |
---|---|
ISSN: | 2331-8422 |