Loading…
Ascending auctions and Walrasian equilibrium
We present a family of submodular valuation classes that generalizes gross substitute. We show that Walrasian equilibrium always exist for one class in this family, and there is a natural ascending auction which finds it. We prove some new structural properties on gross-substitute auctions which, in...
Saved in:
Published in: | arXiv.org 2013-07 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a family of submodular valuation classes that generalizes gross substitute. We show that Walrasian equilibrium always exist for one class in this family, and there is a natural ascending auction which finds it. We prove some new structural properties on gross-substitute auctions which, in turn, show that the known ascending auctions for this class (Gul-Stacchetti and Ausbel) are, in fact, identical. We generalize these two auctions, and provide a simple proof that they terminate in a Walrasian equilibrium. |
---|---|
ISSN: | 2331-8422 |