Loading…
The Brauer group of desingularization of moduli spaces of vector bundles over a curve
Let C be an irreducible smooth projective curve, of genus at least two, defined over an algebraically closed field of characteristic zero. For a fixed line bundle L on C, let M_C(r,L) be the coarse moduli space of semistable vector bundles E over C of rank r and determinant L. We show that the Braue...
Saved in:
Published in: | arXiv.org 2012-05 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let C be an irreducible smooth projective curve, of genus at least two, defined over an algebraically closed field of characteristic zero. For a fixed line bundle L on C, let M_C(r,L) be the coarse moduli space of semistable vector bundles E over C of rank r and determinant L. We show that the Brauer group of any desingularization of M_C(r, L)$ is trivial. |
---|---|
ISSN: | 2331-8422 |