Loading…
Cleavability over ordinals
In this paper we show that if X is an infinite compactum cleavable over an ordinal, then X must be homeomorphic to an ordinal. X must also therefore be a LOTS. This answers two fundamental questions in the area of cleavability. We also leave it as an open question whether cleavability of an infinite...
Saved in:
Published in: | arXiv.org 2012-03 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we show that if X is an infinite compactum cleavable over an ordinal, then X must be homeomorphic to an ordinal. X must also therefore be a LOTS. This answers two fundamental questions in the area of cleavability. We also leave it as an open question whether cleavability of an infinite compactum X over an ordinal \lambda implies X is embeddable into \lambda. |
---|---|
ISSN: | 2331-8422 |