Loading…
Sharp maximal inequalities for the moments of martingales and non-negative submartingales
In the paper we study sharp maximal inequalities for martingales and non-negative submartingales: if \(f\), \(g\) are martingales satisfying \[|\mathrm{d}g_n|\leq|\mathrm{d}f_n|,\qquad n=0,1,2,...,\] almost surely, then \[\Bigl\|\sup_{n\geq0}|g_n|\Bigr\|_p\leq p\|f\|_p,\qquad p\geq2,\] and the inequ...
Saved in:
Published in: | arXiv.org 2012-01 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the paper we study sharp maximal inequalities for martingales and non-negative submartingales: if \(f\), \(g\) are martingales satisfying \[|\mathrm{d}g_n|\leq|\mathrm{d}f_n|,\qquad n=0,1,2,...,\] almost surely, then \[\Bigl\|\sup_{n\geq0}|g_n|\Bigr\|_p\leq p\|f\|_p,\qquad p\geq2,\] and the inequality is sharp. Furthermore, if \(\alpha\in[0,1]\), \(f\) is a non-negative submartingale and \(g\) satisfies \[|\mathrm{d}g_n|\leq|\mathrm{d}f_n|\quad and\quad |\mathbb{E}(\mathrm{d}g_{n+1}|\mathcal {F}_n)|\leq\alpha\mathbb{E}(\mathrm{d}f_{n+1}|\mathcal{F}_n),\qquad n=0,1,2,...,\] almost surely, then \[\Bigl\|\sup_{n\geq0}|g_n|\Bigr\|_p\leq(\alpha+1)p\|f\|_p,\qquad p\geq2,\] and the inequality is sharp. As an application, we establish related estimates for stochastic integrals and It\^{o} processes. The inequalities strengthen the earlier classical results of Burkholder and Choi. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1201.1089 |