Loading…
Feigenbaum Cascade of Discrete Breathers in a Model of DNA
We demonstrate that period-doubled discrete breathers appear from the anti-continuum limit of the driven Peyrard-Bishop-Dauxois model of DNA. These novel breathers result from a stability overlap between sub-harmonic solutions of the driven Morse oscillator. Sub-harmonic breathers exist whenever a s...
Saved in:
Published in: | arXiv.org 2011-01 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate that period-doubled discrete breathers appear from the anti-continuum limit of the driven Peyrard-Bishop-Dauxois model of DNA. These novel breathers result from a stability overlap between sub-harmonic solutions of the driven Morse oscillator. Sub-harmonic breathers exist whenever a stability overlap is present within the Feigenbaum cascade to chaos and therefore an entire cascade of such breathers exists. This phenomenon is present in any driven lattice where the on-site potential admits sub-harmonic solutions. In DNA these breathers may have ramifications for cellular gene expression. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1012.2565 |