Loading…
The time of bootstrap percolation for dense initial sets
In r-neighbour bootstrap percolation on the vertex set of a graph G, vertices are initially infected independently with some probability p. At each time step, the infected set expands by infecting all uninfected vertices that have at least r infected neighbours. We study the distribution of the time...
Saved in:
Published in: | arXiv.org 2012-10 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In r-neighbour bootstrap percolation on the vertex set of a graph G, vertices are initially infected independently with some probability p. At each time step, the infected set expands by infecting all uninfected vertices that have at least r infected neighbours. We study the distribution of the time t at which all vertices become infected. Given t = t(n) = o(log n/log log n), we prove a sharp threshold result for the probability that percolation occurs by time t in d-neighbour bootstrap percolation on the d-dimensional discrete torus T_n^d. Moreover, we show that for certain ranges of p = p(n), the time at which percolation occurs is concentrated either on a single value or on two consecutive values. We also prove corresponding results for the modified d-neighbour rule. |
---|---|
ISSN: | 2331-8422 |