Loading…
A new class of \(({\cal H}^k,1)\)-rectifiable subsets of metric spaces
The main motivation of this paper arises from the study of Carnot-Carathéodory spaces, where the class of 1-rectifiable sets does not contain smooth non-horizontal curves; therefore a new definition of rectifiable sets including non-horizontal curves is needed. This is why we introduce in any metric...
Saved in:
Published in: | arXiv.org 2012-05 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The main motivation of this paper arises from the study of Carnot-Carathéodory spaces, where the class of 1-rectifiable sets does not contain smooth non-horizontal curves; therefore a new definition of rectifiable sets including non-horizontal curves is needed. This is why we introduce in any metric space a new class of curves, called continuously metric differentiable of degree \(k\), which are H\"older but not Lipschitz continuous when \(k>1\). Replacing Lipschitz curves by this kind of curves we define \(({\cal H}^k,1)\)-rectifiable sets and show a density result generalizing the corresponding one in Euclidean geometry. This theorem is a consequence of computations of Hausdorff measures along curves, for which we give an integral formula. In particular, we show that both spherical and usual Hausdorff measures along curves coincide with a class of dimensioned lengths and are related to an interpolation complexity, for which estimates have already been obtained in Carnot-Carathéodory spaces. |
---|---|
ISSN: | 2331-8422 |