Loading…
Radius Constants for Analytic Functions with Fixed Second Coefficient
Let \(f(z)=z+\sum_{n=2}^{\infty}a_nz^n\) be analytic in the unit disk with second coefficient \(a_2\) satisfying \(|a_2|=2b\), \(0\leq b\leq1\). Sharp radius of Janowski starlikeness and other radius constants are obtained when \(|a_n|\leq cn+d\) (\(c,d\geq0\)) or \(|a_n|\leq c/n\) (\(c>0\)) for...
Saved in:
Published in: | arXiv.org 2012-07 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let \(f(z)=z+\sum_{n=2}^{\infty}a_nz^n\) be analytic in the unit disk with second coefficient \(a_2\) satisfying \(|a_2|=2b\), \(0\leq b\leq1\). Sharp radius of Janowski starlikeness and other radius constants are obtained when \(|a_n|\leq cn+d\) (\(c,d\geq0\)) or \(|a_n|\leq c/n\) (\(c>0\)) for \(n\geq3\). |
---|---|
ISSN: | 2331-8422 |