Loading…
Generalization of a few results in Integer Partitions
In this paper, we generalize a few important results in Integer Partitions; namely the results known as Stanley's theorem and Elder's theorem, and the congruence results proposed by Ramanujan for the partition function. We generalize the results of Stanley and Elder from a fixed integer to...
Saved in:
Published in: | arXiv.org 2011-11 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we generalize a few important results in Integer Partitions; namely the results known as Stanley's theorem and Elder's theorem, and the congruence results proposed by Ramanujan for the partition function. We generalize the results of Stanley and Elder from a fixed integer to an array of subsequent integers, and propose an analogue of Ramanujan's congruence relations for the `number of parts' function instead of the partition function. We also deduce the generating function for the `number of parts', and relate the technical results with their graphical interpretations through a novel use of the Ferrer's diagrams. |
---|---|
ISSN: | 2331-8422 |