Loading…

An Operator-Fractal

Certain Bernoulli convolution measures (\mu) are known to be spectral. Recently, much work has concentrated on determining conditions under which orthonormal Fourier bases (i.e. spectral bases) exist. For a fixed measure known to be spectral, the orthonormal basis need not be unique; indeed, there a...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2011-12
Main Authors: Jorgensen, Palle E T, Kornelson, Keri A, Shuman, Karen L
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Certain Bernoulli convolution measures (\mu) are known to be spectral. Recently, much work has concentrated on determining conditions under which orthonormal Fourier bases (i.e. spectral bases) exist. For a fixed measure known to be spectral, the orthonormal basis need not be unique; indeed, there are often families of such spectral bases. Let \lambda = 1/(2n) for a natural number n and consider the Bernoulli measure (\mu) with scale factor \lambda. It is known that L^2(\mu) has a Fourier basis. We first show that there are Cuntz operators acting on this Hilbert space which create an orthogonal decomposition, thereby offering powerful algorithms for computations for Fourier expansions. When L^2(\mu) has more than one Fourier basis, there are natural unitary operators U, indexed by a subset of odd scaling factors p; each U is defined by mapping one ONB to another. We show that the unitary operator U can also be orthogonally decomposed according to the Cuntz relations. Moreover, this operator-fractal U exhibits its own self-similarity.
ISSN:2331-8422