Loading…
Galois theory and commutators
We prove that the relative commutator with respect to a subvariety of a variety of Omega-groups introduced by the first author can be described in terms of categorical Galois theory. This extends the known correspondence between the Froehlich-Lue and the Janelidze-Kelly notions of central extension....
Saved in:
Published in: | arXiv.org 2011-04 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove that the relative commutator with respect to a subvariety of a variety of Omega-groups introduced by the first author can be described in terms of categorical Galois theory. This extends the known correspondence between the Froehlich-Lue and the Janelidze-Kelly notions of central extension. As an example outside the context of Omega-groups we study the reflection of the category of loops to the category of groups where we obtain an interpretation of the associator as a relative commutator. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1104.0518 |